首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigate, here, the mechanism of the costimulatory signals for CD8 T cell activation and confirm that costimulation signals via CD28 do not appear to be required to initiate proliferation, but provide survival signals for CD8 T cells activated by TCR ligation. We show also that IL-6 and TNF-alpha can provide alternative costimulatory survival signals. IL-6 and TNF-alpha costimulate naive CD8 T cells cultured on plate-bound anti-CD3 in the absence of CD28 ligation. They act directly on sorted CD8-positive T cells. They also costimulate naive CD8 T cells from Rag-2-deficient mice, bearing transgenic TCRs for HY, which lack memory cells, a potential source of IL-2 secretion upon activation. IL-6 and TNF-alpha provide costimulation to naive CD8 T cells from CD28, IL-2, or IL-2Ralpha-deficient mice, and thus function in the absence of the B7-CD28 and IL-2 costimulatory pathways. The CD8 T cell generated via the anti-CD3 plus IL-6 and TNF-alpha pathway have effector function in that they express strong cytolytic activity on Ag-specific targets. They secrete only very small amounts of any of the cytokines tested upon restimulation with peptide-loaded APC. The ability of the naive CD8 T cells to respond to TCR ligation and costimulatory signals from IL-6 and TNF-alpha provides a novel pathway that can substitute for signals from CD4 helper cells or professional APC. This may be significant in the response to viral Ags, which can be potentially expressed on the surface of any class I MHC-expressing cell.  相似文献   

2.
A diabetogenic gene prevents T cells from receiving costimulatory signals.   总被引:2,自引:0,他引:2  
T cell fate following antigen encounter is determined by several intracellular signals generated by the interaction of the T cell with an antigen-presenting cell. In the periphery activation requires T cell receptor signaling (signal one) in combination with costimulatory signals (signal two), usually provided through the cognate interaction of CD28 and B7 molecules. Provision of signal one alone to purified murine peripheral T cells in vitro induces apoptosis or anergy rather than promoting activation. These T cells can be rescued from apoptosis if they are provided with costimulation supplied, for example, by engaging the CD28 co-receptor with an anti-CD28 monoclonal antibody or by adding an exogenous source of interleukin-2. However, a majority of peripheral T cells from autoimmune, diabetes-prone Biobreeding (BB) rats exhibited different responses to these stimuli. T cells from these rats could not be rescued from apoptosis by costimulation. This was not due to the inability of BB-DP T cells to upregulate CD28 and the IL-2 receptor in response to TCR crosslinking. The failure of these costimulatory interactions to rescue BB-DP T cells segregated with the diabetes-susceptibility gene iddm1. Iddm1 in the rat causes peripheral T cell lymphopenia, which is associated with a dramatically shortened peripheral T cell life span. Our results indicate that a diabetogenic gene may contribute to autoimmunity by negating costimulatory signals important for the survival of long-lived peripheral T cells.  相似文献   

3.
To induce proper immune responses, T lymphocytes require two types of stimuli, antigen-specific and costimulatory signals. Among costimulatory molecules, CD28-engagement promotes the survival and proliferation of both naive and memory T cells. In addition, it is now believed that Fas may play a role in T cell activation in the human system. It is, however, controversial whether Fas can act as a costimulatory signal in the murine system. Thus, we investigated fundamental differences in the capacity to induce proliferation of T cells between Fas and CD28 in mice. Fas-mediated T cell proliferation was observed only with a full mitogenic dose of anti-CD3 antibodies, whereas CD28 engagement was able to enhance T cell proliferation in the presence of a suboptimal level of anti-CD3 antibody. Furthermore, Fas-engaged T cells showed faster response in the upregulation of CD25 and CD69 expression than CD28-engaged ones. Here, we report that Fas might play a role in mature T cell activation in the mouse system through a different mechanism from that in CD28 costimulation.  相似文献   

4.
Costimulatory Effect of Fas in Mouse T Lymphocytes   总被引:1,自引:0,他引:1  
To induce proper immune responses, T lymphocytes require two types of stimuli, antigen-specific and costimulatory signals. Among costimulatory molecules, CD28-engagement promotes the survival and proliferation of both naive and memory T cells. In addition, it is now believed that Fas may play a role in T cell activation in the human system. It is, however, controversial whether Fas can act as a costimulatory signal in the murine system. Thus, we investigated fundamental differences in the capacity to induce proliferation of T cells between Fas and CD28 in mice. Fas-mediated T cell proliferation was observed only with a full mitogenic dose of anti-CD3 antibodies, whereas CD28 engagement was able to enhance T cell proliferation in the presence of a suboptimal level of anti-CD3 antibody. Furthermore, Fas-engaged T cells showed faster response in the upregulation of CD25 and CD69 expression than CD28-engaged ones. Here, we report that Fas might play a role in mature T cell activation in the mouse system through a different mechanism from that in CD28 costimulation.  相似文献   

5.
Microbial superantigens can alter host immunity through aberrant activation and subsequent anergy of responding naive T cells. We show here that the superantigen, staphylococcal enterotoxin B (SEB), directly induces tolerance in memory CD4 T cells. Murine naive and memory CD4(+) T cells were labeled with the fluorescent dye CFSE and the cells were exposed to SEB before they were cultured with specific peptide antigen. Memory, but not naive, T cells became anergic and did not respond to their cognate peptide antigen. The extent and duration of T cell receptor (TCR) clustering was similar to promote naive T cell activation and memory T cell anergy, suggesting similar TCR-SEB interactions led to distinct intracellular signaling processes in the two cell types. Like SEB, soluble anti-CD3 mAb does not stimulate memory cell proliferation. However, unlike SEB, soluble anti-CD3 mAbs did not induce anergy to cognate peptide. Anergy was directly visualized in vivo. CD4(+) memory T cells were identified in mice that had been administered SEB. The cells failed to proliferate in response to subsequent immunization with their cognate recall antigen. Hence, one mode of pathogen survival is the modulation of host immunity through selective elimination of memory T cell responses.  相似文献   

6.
Immunologic memory reflects the ability of a host to more effectively respond to a re-encounter with a particular pathogen than the first encounter, and when a vaccine mimics the first encounter, comprises the basis of vaccine efficacy. For T cells, memory is often equated with the anamnestic response, the ability of secondary lymphoid tissue-based (central) memory T cells to respond to pathogen exposure with a more rapid and higher magnitude production and infection-site delivery of pathogen-specific effector cells than observed in naive hosts. However, increasing evidence supports a fundamentally different kind of T cell memory in which differentiated, long-lived effector memory T cells, prepositioned in sites of potential pathogen invasion or rapidly mobilized to such sites from blood and marginated pools, intercept and potentially control/eliminate pathogen within hours of infection. In this article, we review the evidence for this "hidden" T cell memory and its implication for vaccine development.  相似文献   

7.
Tissue T cells encounter Ag in a distinct microenvironment, where they are embedded in the interstitial extracellular matrix (ECM). In contrast, while naive T cells are exposed to Ag in the lymph node, immediately after naive T cells are activated they must extravasate into the ECM to function effectively. Because integrin-mediated adhesion to the ECM modulates cell cycle progression and survival in adherent nonimmune cells, we hypothesize that blood and tissue-derived T cells have similarly adapted their behavior to their first or continued encounter with ECM. T cells from peripheral blood (PBT) and tissue (the intestinal lamina propria T cell (LPT)) were stimulated with anti-CD3-coated beads in the presence or absence of native ECM derived from intestinal fibroblasts, plate-immobilized fibronectin, or collagen type I. Native ECM and collagen, but not fibronectin, induced in anti-CD3 activated PBT a 4- to 5-fold increase in the entry, progression, and completion of the cell cycle over that triggered by anti-CD3 alone. Neutralizing beta1 integrin Abs abrogated this increase. None of these ECM proteins stimulated cell cycle progression in LPT. In contrast, anti-CD3 activation of LPT in the presence of native ECM and fibronectin reduced activation-induced cell death by 40%. These results demonstrate that naive and effector/memory T cells respond differently upon exposure to specific ECM components. When naive PBT encounter Ag in the context of ECM, their progression through the cell cycle is enhanced, favoring clonal expansion; while tissue T cell longevity may be mediated by interactions with the ECM.  相似文献   

8.
Ag-specific proliferation of CD4+ T cells is regulated, in part, by costimulatory signals through CD28. The proliferative response during primary activation is an important determinant of the ability of the T cell to respond to Ag re-encounter. Proliferation of mature CD4+ T cells during lymphopenia (homeostatic proliferation) requires interaction with endogenous peptide MHC. However, the role of costimulation during homeostatic proliferation is unclear, as is the ability of homeostatic proliferation to regulate secondary T cell responses. Using a TCR transgenic system and serial adoptive transfers we find that homeostatic proliferation of CD4+ T cells occurs for at least 5 wk after adoptive transfer into recombination-activating gene (RAG)-/- recipients. Two discrete populations of proliferating T cells can be resolved, one that is highly proliferative and dependent on CD28 signaling, and the other that contains cells undergoing low levels of CD28-independent proliferation. Importantly, naive CD4+ T cells that have undergone homeostatic proliferation acquire both phenotypic and functional characteristics of true memory cells. These studies indicate that functional memory T cells can be generated by encounters with endogenous Ags only. This mechanism of T cell regeneration is possibly active during lymphopenia due to viral infections, such as HIV, transplantation, or cancer therapy, and may explain selected autoimmune diseases.  相似文献   

9.
Dendritic cells (DCs) are professional APCs able to initiate innate and adaptive immune responses against invading pathogens. Different properties such as the efficient Ag processing machinery, the high levels of expression of costimulatory molecules and peptide-MHC complexes, and the production of cytokines contribute in making DCs potent stimulators of naive T cell responses. Recently we have observed that DCs are able to produce IL-2 following bacterial stimulation, and we have demonstrated that this particular cytokine is a key molecule conferring to early bacterial activated DCs unique T cell priming capacity. In the present study we show that many different microbial stimuli, but not inflammatory cytokines, are able to stimulate DCs to produce IL-2, indicating that DCs can distinguish a cytokine-mediated inflammatory process from the actual presence of an infection. The capacity to produce IL-2 following a microbial stimuli encounter is a feature shared by diverse DC subtypes in vivo, such as CD8 alpha(+) and CD8 alpha(-) splenic DCs and epidermal Langerhans cells. When early activated DCs interact with T cells, IL-2 produced by DCs is enriched at the site of cell-cell contact, confirming the importance of DCs-derived IL-2 in T cell activation.  相似文献   

10.
Age-related decline in immunity can impair cell-mediated responses during an infection, malignancy, and acute allograft rejection. Although much research has been allocated to understand the immune responses that impact the former two conditions, the cellular mechanisms by which aging impacts the immune acceptance of organ allografts are not completely clear. In this study, we examined how recipient age impacts the efficacy of therapies that modulate immune recognition of allografts using an immunogenic murine skin transplant model. We found that costimulatory blockade-based treatment failed to extend allograft survival in older recipients to the same extent as that observed in younger recipients. CD8(+) T cells were critical for the inability of aged recipients to achieve maximal allograft survival. Although aged mice displayed a larger number of effector memory T cells prior to transplantation, these cells did not exhibit enhanced alloreactivity compared with young memory T cells. In contrast, naive aged CD8(+) T cells exhibited enhanced IFN-γ production to allostimulation compared with young naive T cells. Our results provide evidence that aging enhances CD8(+) T cell alloreactivity. This could impair the ability of costimulatory blockade-based therapies to prolong allograft survival. Thus, targeting CD8(+) T cells in humans may be a way to improve outcomes in older patients requiring immune modulatory therapy.  相似文献   

11.
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.  相似文献   

12.
A previously unreported CD8(+)CD28(+)CD11b(+) T cell subset occurs in healthy individuals and expands in patients suffering from primary viral infections. In functional terms, these cells share the features of naive/memory CD8(+)CD28(+)CD11b(-) and terminally differentiated effector CD8(+)CD28(-)CD11b(+) subpopulations. Like CD28(-) cells, CD28(+)CD11b(+) lymphocytes have the ability to produce IFN-gamma, to express perforin granules in vivo, and to exert a potent cytolytic activity. Moreover, these cells can respond to chemotactic stimuli and can efficiently cross the endothelial barrier. In contrast, like their CD11b(-) counterpart, they still produce IL-2 and retain the ability to proliferate following mitogenic stimuli. The same CD28(+)CD11b(+) subpopulation detected in vivo could be generated by culturing naive CD28(+)CD11b(-) cells in the presence of mitogenic stimuli following the acquisition of a CD45RO(+) memory phenotype. Considering both phenotypic and functional properties, we argue that this subset may therefore constitute an intermediate phenotype in the process of CD8(+) T cell differentiation and that the CD11b marker expression can distinguish between memory- and effector-type T cells in the human CD8(+)CD28(+) T cell subset.  相似文献   

13.
Dendritic cell-derived indoleamine 2,3-dioxygenase (IDO) suppresses naive T cell proliferation and induces their apoptosis by catalyzing tryptophan, and hence is essential for the maintenance of peripheral tolerance. However, it is not known whether memory T cells are subject to the regulation by IDO-mediated tryptophan catabolism, as memory T cells respond more rapidly and vigorously than their naive counterparts and are resistant to conventional costimulatory blockade. In this study, we present the evidence that memory CD8+ T cells are susceptible to tryptophan catabolism mediated by IDO. We found that overexpression of IDO in vivo attenuated the generation of both central memory CD8+ T cells (T(CM)) and effector memory CD8+ T cells (T(EM)) while suppressing IDO activity promoted their generation. Moreover, IDO overexpression suppressed the effector function of T(CM) cells or T(CM) cell-mediated allograft rejection as well as their proliferation in vivo. Interestingly, T(CM) cells were resistant to apoptosis induced by tryptophan catabolism. However, IDO overexpression did not suppress the effector function of T(EM) cells or T(EM) cell-mediated allograft rejection, suggesting that T(EM) cells, unlike T(CM) cells, do not require tryptophan for their effector function once they are generated. This study provides insight into the mechanisms underlying the differential regulation of memory T cell responsiveness and has clinical implications for vaccination or tolerance induction.  相似文献   

14.
The role of the accessory molecule ICAM-1 in activation of subpopulations of human T cells was examined using the bacterial superantigen staphylococcal enterotoxin A (SEA) as a MHC class II and TCR-dependent polyclonal T cell activator. Human T cells responded with different sensitivity to SEA when presented on mouse accessory cells expressing a human transfected MHC class II gene product. Mouse L cells cotransfected with both MHC class II (DR2A or DR7) and ICAM-1-stimulated T cells at 100-fold lower concentrations of SEA as compared to the single transfected cells. mAb reacting with the CD11a, CD18, or ICAM-1 molecules efficiently inhibited T cell activation with the cotransfected HLA-DR2A/ICAM-1 cell but did not influence T cell activation with the HLA-DR2A single transfected cell. Analysis of the ICAM-1 requirement on CD4+ memory (CD4+45RO+) and naive (CD4+45RA+) T cells revealed that CD4+45RA+ naive Th cells were hyporesponsive to SEA-induced activation with the HLA-DR2A single transfectant. However, cotransfection of ICAM-1 enabled these cells to respond to low doses of SEA implicating that they are more dependent on accessory molecules than the CD4+45RO+ cells. rICAM-1 immobilized on a plastic surface, was able to strongly costimulate SEA-induced T cell activation with the HLA-DR2A single transfectant, suggesting that costimulatory signals mediated to the T cells through LFA-1 can be delivered physically separated from the TCR signal. CD4+45RO+ memory and CD4+45RA+ naive Th cells apparently differ in their capacities to be activated by SEA bound to HLA-DR. Although the TCR molecule densities are similar in these two subsets, costimulation with ICAM-1 is required for activation of the CD4+45RA+, but not the CD4+45RO+ T cell subset at 1 to 10,000 ng/ml concentrations of SEA. This observation indicates different activation thresholds of naive and memory Th cells when triggering the TCR over a wide dose interval of superantigen.  相似文献   

15.
T cells are required for an effective immune response against a wide range of pathogens and for the generation of immunological memory. T cell activation can be divided into two phases: an antigen-specific signal delivered through the T cell antigen receptor, and a costimulatory signal delivered through accessory molecules on the T cell surface. Following activation, T cells differentiate to acquire distinct effector functions depending on the costimulatory signal, cytokine environment, and the pathogen itself. Although CD28 has been identified as the dominant costimulatory molecule, several other molecules have been described as having a costimulatory function. This review will focus on recent evidence for the existence of alternate costimulatory molecules, and the differential roles they might play in the activation, development, and survival of T cells.  相似文献   

16.
17.
Many immunological defects have been described in HIV disease, including a diminished capacity of naive CD4+ T cells to expand after TCR stimulation. The mechanisms underlying impaired naive CD4+ T cell expansion in HIV disease are not well described. Using a rigorous phenotypic definition of naive T cells, we found that cell cycle entry after TCR engagement was restricted to cells that increased surface expression of costimulatory molecules CD27 and CD28. Induction of these receptors, however, was not sufficient to result in cell cycle entry among the CD4+CD31- naive T cell subset. Analyses of cells from HIV-infected persons indicated that naive CD4+CD31+ T cells from these subjects were impaired in their ability to enter the cell cycle after stimulation and this impairment was predicted by the relatively poor induction of costimulatory molecules on these cells. Thus, failure to increase surface expression of costimulatory molecules may contribute to the naive T cell expansion failure that characterizes HIV infection.  相似文献   

18.
Anti-CD3 mAbs are potent immunosuppressive agents used in clinical transplantation. It has been generally assumed that one of the anti-CD3 mAb-mediated tolerance mechanisms is through the induction of naive T cell unresponsiveness, often referred to as anergy. We demonstrate in this study that naive T cells stimulated by anti-CD3 mAbs both in vivo and in vitro do not respond to the superantigen staphylococcal enterotoxin B nor to soluble forms of anti-CD3 mAbs and APC, but express increased reactivity to plastic-coated forms of the same anti-CD3 mAbs and to their nominal Ag/class II MHC, a finding that is difficult to rationalize with the concept of anergy. Phenotypic and detailed kinetic studies further suggest that a strong signal 1 delivered by anti-CD3 mAbs in the absence of costimulatory molecules does not lead to anergy, but rather induces naive T cells to change their mitogen responsiveness and acquire features of memory T cells. In marked contrast, Ag-experienced T cells are sensitive to anergy induction under the same experimental settings. Collectively, these studies demonstrate that exposure of naive T cells in vivo and in vitro to a strong TCR stimulus does not induce Ag unresponsiveness, indicating that sensitivity to negative signaling through TCR/CD3 triggering is developmentally regulated in CD4(+) T cells.  相似文献   

19.
We have used HSCA-2, an mAb that recognizes a sialic acid-dependent epitope on the low molecular mass (approximately 115-kDa) glycoform of CD43 that is expressed in resting T and NK cells, to examine the expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells. Having previously reported that the memory cells that respond to recall Ags in a CD4+ CD45RO+ T cell population almost all belong to a subset whose surface CD43 expression levels are elevated, we now find that exposing these same memory T cells to HSCA-2 mAb markedly increases their proliferative responsiveness to recall Ags. We think it unlikely that this increase in responsiveness is a result of CD43-mediated monocyte activation, especially given that the HSCA-2 mAb differs from all previously used CD43 mAbs in having no obvious binding specificity for monocyte CD43. Predictably, treatment with HSCA-2 mAb did not lead to significant recall responses in CD4+ CD45RO+ T cells, whose CD43 expression levels were similar to or lower than those of naive cells. Other experiments indicated that the HSCA-2 mAb was capable of enhancing the proliferative responsiveness of CD4+ memory T cells that had been exposed to polyclonal stimulation by monocyte-bound CD3 mAb and could also act in synergy with CD28 mAb to enhance the responsiveness of CD4+ T cells to CD3 stimulation. Taken together, these findings suggest that the CD43 molecules expressed on CD4+ memory T cells may be capable of enhancing the costimulatory signaling and hence providing accessory functions to TCR-mediated activation processes.  相似文献   

20.
Although resting B cells as APC are tolerogenic for naive T cells in vivo, we show here that they can provide all the costimulatory signals necessary for naive T cell proliferation in vivo and in vitro. In the absence of an activating signal through the B cell Ag receptor, T cell proliferation after Ag recognition on resting B cells depends on CD40 expression on the B cells, implying that naive T cells use the membrane-bound cytokine, CD40 ligand (CD154), to induce the costimulatory signals that they need. Induction of B7-1 (CD80) and increased or sustained expression of CD44H, ICAM-1 (CD54), and B7-2 (CD86) are dependent on the interaction of CD40 ligand with CD40. Transient expression (12 h) of B7-2 is T cell- and peptide Ag-dependent, but CD40-independent. Only sustained (>/=24 h) expression of B7-2 and perhaps increased expression of ICAM-1 could be shown to be functionally important in this system. T cells cultured with CD40-deficient B cells and peptide remain about as responsive as fresh naive cells upon secondary culture with whole splenic APC. Therefore, B cells, and perhaps other APC, may be tolerogenic not because they fail to provide sufficient costimulation for T cell proliferation, but because they are deficient in some later functions necessary for a productive T cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号