首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. The observed type of heredity associated with MS is characteristic of polygenic diseases, which arises from a joint contribution of a number of independently acting or interacting polymorphic genes. Recently to identify the genes responsible for genetic predisposition to MS two main approaches have been applied: (1) analysis of association of individual “candidate genes” with the disease and (2) analysis of the wide spectrum of chromosomal loci (whole genome screen) linkage with the disease in families with several MS patients. In the last two years, a new method, which borrowed the best approaches of the previous studies, genome-wide association screening (GWAS), which is based on the modern high-throughput DNA analysis, has been developed. This review describes replicated (validated) results for individual genes and DNA loci located on the majority of chromosomes obtained using these three strategies as well as data on association of MS with allelic combinations of various genes.  相似文献   

2.
The state of readiness for high-dimensional single nucleotide polymorphism (SNP) epidemiologic association studies is described, as background for a discussion of statistical aspects of case-control study design and analysis. Specifically, the important role that multistage designs can play in the elimination of false-positive associations and in the control of study costs will be noted. Also, the trade-offs associated with using pooled DNA at early design stages for additional important cost reductions will be discussed in some detail. An odds ratio approach to relating SNP alleles to disease risk using pooled DNA will be proposed, in conjunction with a simple empirical variance estimator, based on comparisons among log-odds ratio estimators from distinct pairs of case and control pools. Simulation studies will be presented to evaluate the moderate sample size properties of such multistage designs and estimation procedures. The design of an ongoing three-stage study in the Women's Health Initiative to relate 250,000 SNPs to the risk of coronary heart disease, stroke, and breast cancer will provide illustration, and will be used to motivate the choice of simulation configurations.  相似文献   

3.
Evidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area.  相似文献   

4.
Torkamani A  Topol EJ  Schork NJ 《Genomics》2008,92(5):265-272
Recent genome-wide association studies (GWAS) have identified DNA sequence variations that exhibit unequivocal statistical associations with many common chronic diseases. However, the vast majority of these studies identified variations that explain only a very small fraction of disease burden in the population at large, suggesting that other factors, such as multiple rare or low-penetrance variations and interacting environmental factors, are major contributors to disease susceptibility. Identifying multiple low-penetrance variations (or "polygenes") contributing to disease susceptibility will be difficult. We present a pathway analysis approach to characterizing the likely polygenic basis of seven common diseases using the Wellcome Trust Case Control Consortium (WTCCC) GWAS results. We identify numerous pathways implicated in disease predisposition that would have not been revealed using standard single-locus GWAS statistical analysis criteria. Many of these pathways have long been assumed to contain polymorphic genes that lead to disease predisposition. Additionally, we analyze the genetic relationships between the seven diseases, and based upon similarities with respect to the associated genes and pathways affected in each, propose a new way of categorizing the diseases.  相似文献   

5.
Chen R  Davydov EV  Sirota M  Butte AJ 《PloS one》2010,5(10):e13574
Many DNA variants have been identified on more than 300 diseases and traits using Genome-Wide Association Studies (GWASs). Some have been validated using deep sequencing, but many fewer have been validated functionally, primarily focused on non-synonymous coding SNPs (nsSNPs). It is an open question whether synonymous coding SNPs (sSNPs) and other non-coding SNPs can lead to as high odds ratios as nsSNPs. We conducted a broad survey across 21,429 disease-SNP associations curated from 2,113 publications studying human genetic association, and found that nsSNPs and sSNPs shared similar likelihood and effect size for disease association. The enrichment of disease-associated SNPs around the 80(th) base in the first introns might provide an effective way to prioritize intronic SNPs for functional studies. We further found that the likelihood of disease association was positively associated with the effect size across different types of SNPs, and SNPs in the 3' untranslated regions, such as the microRNA binding sites, might be under-investigated. Our results suggest that sSNPs are just as likely to be involved in disease mechanisms, so we recommend that sSNPs discovered from GWAS should also be examined with functional studies.  相似文献   

6.
《Free radical research》2013,47(4):554-564
Abstract

Evidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area.  相似文献   

7.
Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for evaluating the utility of other or future genome-wide genotyping platforms in pooled DNA studies.  相似文献   

8.
A. R. Templeton 《Genetics》1995,140(1):403-409
Present-day associations between haplotypes at a candidate locus and phenotypes exist when phenotypically important mutations occurred at some point during the evolution of the current array of genetic variation. A cladistic statistical design can be defined that focuses power by using the evolutionary history of the candidate DNA region. This paper shows how cladistic methodology is used for the analysis of case/control data, a common sampling design in genetic/disease association studies. A worked example is presented of the associations for sporadic early and late-onset forms of Alzheimer's disease with the 19q13.2 chromosomal region that includes the loci for apoproteins E, CI, and CII. This analysis confirms earlier reports of a strong association of the ApoE &4 allele with Alzheimer's disease but indicates that it is premature to condsider this association causal, particularly for early onset cases. Associations were also found with the &2 allele, as previously reported, and with the 1 allele at the ApoCI locus. However, this analysis indicates that it is inappropriate both statistically and medically to use single markers as risk predictors when haplotype data are available, even when the mutation leading to the marker is identified as having a strong phenotypic association.  相似文献   

9.
Intensive development of DNA analysis technologies and large-scale genome-wide association studies have led to accumulation of a large array of data on the relationship between genetic factors and various phenotypic manifestations, including monogenic and polygenic hereditary diseases. This has greatly extended the capabilities of clinical diagnostics and predictive medicine in the field of socially significant diseases. For example, the role of a genetic component of the risk for such multifactorial and polyetiologic disease as stroke is now actively explored. Large-scale studies have revealed both general and specific genetic markers associated only with a certain type and subtype of stroke. This review analyzes the current state of the problem of using genetic markers for diagnosis of predisposition to stroke, complex issues associated with multiplicity of risk factors for stroke, and potential development in this area.  相似文献   

10.
Association mapping of disease loci, by use of a pooled DNA genomic screen.   总被引:24,自引:1,他引:23  
Genomic screening to map disease loci by association requires automation, pooling of DNA samples, and 3,000-6,000 highly polymorphic, evenly spaced microsatellite markers. Case-control samples can be used in an initial screen, followed by family-based data to confirm marker associations. Association mapping is relevant to genetic studies of complex diseases in which linkage analysis may be less effective and to cases in which multigenerational data are difficult to obtain, including rare or late-onset conditions and infectious diseases. The method can also be used effectively to follow up and confirm regions identified in linkage studies or to investigate candidate disease loci. Study designs can incorporate disease heterogeneity and interaction effects by appropriate subdivision of samples before screening. Here we report use of pooled DNA amplifications-the accurate determination of marker-disease associations for both case-control and nuclear family-based data-including application of correction methods for stutter artifact and preferential amplification. These issues, combined with a discussion of both statistical power and experimental design to define the necessary requirements for detecting of disease loci while virtually eliminating false positives, suggest the feasibility and efficiency of association mapping using pooled DNA screening.  相似文献   

11.
Epigenetic marks such as DNA methylation have generated great interest in the study of human disease. However, studies of DNA methylation have not established population-epigenetics principles to guide design, efficient statistics, or interpretation. Here, we show that the clustering of correlated DNA methylation at CpGs was similar to that of linkage-disequilibrium (LD) correlation in genetic SNP variation but for much shorter distances. Some clustering of methylated CpGs appeared to be genetically driven. Further, a set of correlated methylated CpGs related to a single SNP-based LD block was not always physically contiguous—segments of uncorrelated methylation as long as 300 kb could be interspersed in the cluster. Thus, we denoted these sets of correlated CpGs as GeMes, defined as potentially noncontiguous methylation clusters under the control of one or more methylation quantitative trait loci. This type of correlated methylation structure has implications for both biological functions of DNA methylation and for the design, analysis, and interpretation of epigenome-wide association studies.  相似文献   

12.
We have developed a robust microarray genotyping chip that will help advance studies in genetic epidemiology. In population-based genetic association studies of complex disease, there could be hidden genetic substructure in the study populations, resulting in false-positive associations. Such population stratification may confound efforts to identify true associations between genotype/haplotype and phenotype. Methods relying on genotyping additional null single nucleotide polymorphism (SNP) markers have been proposed, such as genomic control (GC) and structured association (SA), to correct association tests for population stratification. If there is an association of a disease with null SNPs, this suggests that there is a population subset with different genetic background plus different disease susceptibility. Genotyping over 100 null SNPs in the large numbers of patient and control DNA samples that are required in genetic association studies can be prohibitively expensive. We have therefore developed and tested a resequencing chip based on arrayed primer extension (APEX) from over 2000 DNA probe features that facilitate multiple interrogations of each SNP, providing a powerful, accurate, and economical means to simultaneously determine the genotypes at 110 null SNP loci in any individual. Based on 1141 known genotypes from other research groups, our GC SNP chip has an accuracy of 98.5%, including non-calls.  相似文献   

13.
Association study designs for complex diseases   总被引:1,自引:0,他引:1  
Assessing the association between DNA variants and disease has been used widely to identify regions of the genome and candidate genes that contribute to disease. However, there are numerous examples of associations that cannot be replicated, which has led to skepticism about the utility of the approach for common conditions. With the discovery of massive numbers of genetic markers and the development of better tools for genotyping, association studies will inevitably proliferate. Now is the time to consider critically the design of such studies, to avoid the mistakes of the past and to maximize their potential to identify new components of disease.  相似文献   

14.
In many large cohort studies of association between a disease and a concommitant variable, only a small fraction of subjects develope the disease. Substantial computational expense can be avoided by restricting the analysis to the diseased cases and a random sample of disease-free controls. This paper examines the efficiency of such synthetic retrospective designs relative to that of the full cohort analysis when the association is studied using the logistic or proportional hazards model. Within this context the efficiencies of matched vs. unmatched designs are also examined.  相似文献   

15.
16.
复杂疾病全基因组关联研究进展——遗传统计分析   总被引:7,自引:0,他引:7  
严卫丽 《遗传》2008,30(5):543-549
2005年, Science杂志首次报道了有关人类年龄相关性黄斑变性的全基因组关联研究, 此后有关肥胖、2型糖尿病、冠心病、阿尔茨海默病等一系列复杂疾病的全基因组关联研究被陆续报道, 这一阶段被称为人类全基因组关联研究的第一次浪潮。文章分别介绍了全基因组关联研究统计分析的方法、软件和应用实例; 比较了关联分析中多重检验的P值调整方法, 包括Bonferroni、递减的Bonferroni校正法、模拟运算法和控制错误发现率的方法; 还讨论了人群混杂对关联分析结果可能产生的影响及原理, 以及全基因组关联研究中控制人群混杂的方法的研究进展和应用实例。在全基因组关联研究的第一次浪潮中, 应用经典的遗传统计方法发现了许多基因-表型之间的关联并且能够对这些关联做出解释, 其中包括许多基因组中的未知基因和染色体区域。然而, 全基因组关联研究的继续发展需要进一步阐述基因组内基因之间相互作用、基因-基因之间的复杂作用网络与环境因素的相互作用在复杂疾病发生中的作用, 现有的统计分析方法肯定不能满足需要, 开发更为高级的统计分析方法势在必行。最后, 文章还给出了全基因组关联研究统计分析软件的相关网站信息。  相似文献   

17.
Endophenotypes such as behavior disorders have been increasingly adopted in genetic studies for complex traits. For efficient gene mapping, it is essential that an endophenotype is associated with the disease of interest and is inheritable or co-segregating within families. In this study, we proposed a strategy to construct endophenotypes to analyze the Genetic Analysis Workshop 14 simulated dataset. Initially, generalized estimating equation models were employed to identify phenotypes that were correlated to the disease (affected status) in combination with the family structures in data. Endophenotypes were then constructed with consideration of heterogeneity as functions of the identified phenotypes. Genome scans on the constructed endophenotypes were carried out using family-based association analysis. For comparison, genome scans were also performed with the original affected status. The family-based association analysis using the endophenotypes correctly identified the same susceptible gene in about 80 of the 100 replicates.  相似文献   

18.
DNA pooling is a potential methodology for genetic loci with small effect contributing to complex diseases and quantitative traits. This is accomplished by the rapid preliminary screening of the genome for the allelic association with the most common class of polymorphic short tandem repeat markers. The methodology assumes as a common founder for the linked disease locus of interest and searches for a region of a chromosome shared between affected individuals. The general theory of DNA pooling basically relies on the observed differences in the allelic distribution between pools from affected and unaffected individuals, including a reduction in the number of alleles in the affected pool, which indicate the sharing of a chromosomal region. The power of statistic for associated linkage mapping can be determined using two recently developed strategies, firstly, by measuring the differences of allelic image patterns produced by two DNA pools of extreme character and secondly, by measuring total allele content differences by comparing between two pools containing large numbers of DNA samples. These strategies have effectively been utilized to identify the shared chromosomal regions for linkage studies and to investigate the candidate disease loci for fine structure gene mapping using allelic association. This paper outlines the utilization of DNA pooling as a potential tool to locate the complex disease loci, statistical methods for accurate estimates of allelic frequencies from DNA pools, its advantages, drawbacks and significance in associate linkage mapping using pooled DNA samples.  相似文献   

19.
Deep sequencing technologies enable the study of the effects of rare variants in disease risk. While methods have been developed to increase statistical power for detection of such effects, detecting subtle associations requires studies with hundreds or thousands of individuals, which is prohibitively costly. Recently, low-coverage sequencing has been shown to effectively reduce the cost of genome-wide association studies, using current sequencing technologies. However, current methods for disease association testing on rare variants cannot be applied directly to low-coverage sequencing data, as they require individual genotype data, which may not be called correctly due to low-coverage and inherent sequencing errors. In this article, we propose two novel methods for detecting association of rare variants with disease risk, using low coverage, error-prone sequencing. We show by simulation that our methods outperform previous methods under both low- and high-coverage sequencing and under different disease architectures. We use real data and simulation studies to demonstrate that to maximize the power to detect associations for a fixed budget, it is desirable to include more samples while lowering coverage and to perform an analysis using our suggested methods.  相似文献   

20.
One approach frequently used for identifying genetic factors involved in the process of a complex disease is the comparison of patients and controls for a number of genetic markers near a candidate gene. The analysis of such association studies raises some specific problems because of the fact that genotypic and not gametic data are generally available. We present a log-linear-model analysis providing a valid method for analyzing such studies. When studying the association of disease with one marker locus, the log-linear model allows one to test for the difference between allelic frequencies among affected and unaffected individuals, Hardy-Weinberg (H-W) equilibrium in both groups, and interaction between the association of alleles at the marker locus and disease. This interaction provides information about the dominance of the disease susceptibility locus, with dominance defined using the epidemiological notion of odds ratio. The degree of dominance measured at the marker locus depends on the strength of linkage disequilibrium between the marker locus and the disease locus. When studying the association of disease with several linked markers, the model becomes rapidly complex and uninterpretable unless it is assumed that affected and unaffected populations are in H-W equilibrium at each locus. This hypothesis must be tested before going ahead in the analysis. If it is not rejected, the log-linear model offers a stepwise method of identification of the parameters causing the difference between populations. This model can be extended to any number of loci, alleles, or populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号