首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphocyte migration from the blood into the lymph nodes in most species occurs across post-capillary high endothelial venules (HEV). In a previous study, we proposed that lymphocyte extravasation involves receptor-mediated binding followed by adenylate cyclase-dependent activation of lymphocyte motility. This hypothesis was, in part, based on observations of in vitro lymphocyte adherence to HEV by employing pertussigen, which is a known inhibitor of lymphocyte recirculation. In vitro lymphocyte-HEV binding requires a cold (6 degrees C) incubation step and binding is poor to nil if the assay is attempted at room (23 degrees C) or physiologic temperature. We decided to investigate why this assay is temperature restricted, because of the possibility that pertussigen or fucoidin -treated lymphocytes might interact with HEV differently at higher temperatures. We now report that O.C.T. compound (OCT), the embedding matrix generally used to cut frozen lymph node sections, is toxic to lymphocytes at temperatures above 6 degrees C. Exclusion of OCT from the assay system will allow lymphocyte-HEV binding to occur at 23 degrees C and to a lesser extent at 37 degrees C. With this modified protocol, lymphocytes treated with either pertussigen, fucoidin , or neuraminidase were tested for adherence to HEV at 23 degrees C. No essential difference in binding properties was observed from what had been reported at 6 degrees C. In contrast, trypsin-treated lymphocytes that did not bind to HEV with the standard technique at 6 degrees C did adhere to a minimal extent to HEV at 23 degrees C using the modified procedure. We also report some preliminary work, using the modified assay, on in vitro lymphocyte-HEV binding of rat, rabbit, and guinea pig lymphocytes to sections of lymph nodes from the respective species.  相似文献   

2.
Lymphocyte entry into lymph nodes (LN) and Peyer's patches (PP) occurs specifically at high endothelial cell venules (HEV). We previously isolated a high endothelial binding factor (HEBFLN) from rat lymph that blocked the lymphocyte binding sites of HEVLN but not HEVPP. In this study, mouse monoclonal anti-HEBFLN antibody (A.11) was used to investigate rat lymphocyte surface structures mediating adhesion to high endothelium. The A.11 antigen was expressed on the majority of thoracic duct lymphocytes (TDL), spleen, LN, PP cells, but was only detected on few (1 to 10%) thymus and bone marrow cells (indirect immunofluorescence). The treatment of TDL with the A.11 IgG blocked their ability to bind to HEVLN. This effect was specific, inasmuch as A.11 antibody did not block lymphocyte binding to HEVPP, and an anti-leukocyte-common antigen monoclonal antibody, OX1, did not block lymphocyte binding to HEVLN. In addition, the A.11 antigen isolated from the lymph and detergent lysates of TDL by antibody affinity chromatography had the capacity to block the lymphocyte binding sites of HEVLN but not HEVPP. Immunoprecipitation studies revealed that the A.11 antibody recognized the radioiodinated surface membrane proteins of TDL and TDL-derived T cells and B cells, which resolved with SDS-PAGE autoradiography into three polypeptides with relative m.w. of approximately 135,000, 63,000, and 40,000. We conclude that the A.11 antigen is a component of the lymphocyte surface recognition structure that mediates adhesion to high endothelial cells of rat peripheral lymph nodes.  相似文献   

3.
Cell surface molecules involved in lymphocyte adhesion to high endothelial cell venules (HEV) of Peyer's patches (PP) have been studied in the rat by using a mouse monoclonal anti-HEBFPP (1B.2) antibody. We previously showed that rat thoracic duct lymph contains a high endothelial cell binding factor termed HEBFPP, which in vitro blocks lymphocyte binding sites of HEVPP but not HEVLN. Monoclonal 1B.2 antibody was produced by fusing P3U1 myeloma cells with spleen cells of a mouse immunized with this material. Immunoprecipitation studies with 125I surface-labeled rat thoracic duct lymphocytes (TDL) showed that the antibody recognized an 80-kilodalton protein. This antigen was present in the majority of TDL, spleen, LN, and PP cells but was found on few (5 to 10%) thymus and bone marrow cells (indirect immunofluorescence). Treatment of TDL with 1B.2 antibody blocked their ability to bind in vitro to HEVPP; antibody treatment did not interfere with TDL adhesion to HEVLN. Analysis of 1B.2 antigen isolated from lymph and detergent lysates of TDL by antibody-affinity chromatography showed that this material had the capacity to block lymphocyte binding sites of HEVPP but not HEVLN. In contrast, material with such blocking activity was not isolated from detergent lysates of thymocyte, a population deficient in HEV-binding cells. The results indicate that the 1B.2 antigen is a component of the lymphocyte surface recognition structure mediating adhesion to HEVPP and provide further evidence that distinct adhesion molecules of rat TDL mediate interaction with high endothelium of LN and PP.  相似文献   

4.
An in vitro system developed for studying lymphocyte binding to high endothelial venules (HEV) of lymph nodes was used to determine if there are similar binding sites in other organs of the rat. Thoracic duct lymphocytes (TDL) adhered selectively and uniformly to white matter when overlaid onto glutaraldehyde-fixed tissue sections of cerebellum and cerebrum. The pattern of TDL adherence to cerebellar sections showed that binding to nonmyelinated areas was negligible. Comparison of TDL-white matter to TDL-HEV binding demonstrated that the density of adherence to each site was quantitatively similar. In contrast, lymphocytes exhibited little tendency to bind to tissue sections of liver, spleen, heart, thymus, and salivary glands. TDL adherence to cerebellar white matter occurred rapidly, was cell dose dependent and optimal at 7 degrees C. White matter binding was also a property of spleen lymphocytes but the thymus was deficient in cells with this capability. The affinity of TDL and spleen lymphocytes for myelinated areas of the brain suggests the presence of myelin binding receptors on these cells.  相似文献   

5.
The molecular mechanisms by which pertussis toxin (PTX) inhibits lymphocyte homing to peripheral lymph nodes (PLN) remain poorly understood. PTX-treated lymphocytes express homing receptors, yet cannot extravasate into PLN in vivo. Methylation of PTX, a procedure known to inactivate the B-oligomer of the toxin, restored high endothelial venule (HEV) binding capacity. In vitro studies established that toxin exposure inhibited the accessory role of LFA-1 in HEV binding. In contrast, PTX-exposed lymphocytes exhibited normal MEL-14-mediated HEV binding. Analysis of membrane fluidity revealed a 20% decrease in fluorescence polarization in PTX-exposed lymphocytes. On the basis of the current experiments, we propose a "zipper" model of lymphocyte-HEV interaction, in which lateral mobility of adhesion receptors in the cell membrane toward a site of endothelial contact is necessary to maintain adhesion against the shear force due to blood flow. PTX inhibits these processes by decreasing membrane fluidity, and by altering accessory adhesion molecule function.  相似文献   

6.
Rat thoracic duct lymphocytes (TDL) bind selectively to venules lined by high endothelial cells (HEV) when overlaid onto glutaraldehyde-fixed frozen sections of lymph nodes. This report describes the characteristics of TDL binding to HEV in unfixed frozen sections and compares this reactivity with that observed after fixing sections with different reagents. We found that TDL bound to unfixed HEV and that the pattern of adherence to such sections was identical to that observed when using glutaraldehyde-fixed tissue. Fixation of the sections with glutaraldehyde, however, enhanced the binding reaction. This effect was also observed when sections were treated with the diimidoester, dimethylsuberimidate (DMS) but not when methanol or formaldehyde was used. Since glutaraldehyde and DMS are each bifunctional cross-linking reagents, the results suggest that in vitro HEV adherence was facilitated under conditions in which the endothelial binding sites were present in an aggregated form.  相似文献   

7.
Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.  相似文献   

8.
The tissue-specific homing of lymphocytes is directed by specialized high endothelial venules (HEV). At least three functionally independent lymphocyte/HEV recognition systems exist, controlling the extravasation of circulating lymphocytes into peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches or appendix), and the synovium of inflamed joints. We report here that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85-95-kD lymphocyte surface glycoprotein antigen, defined by the non-blocking monoclonal antibody, Hermes-1. We demonstrate that MEL-14, a monoclonal antibody against putative lymph node "homing receptors" in the mouse, functionally inhibits human lymphocyte binding to lymph node HEV but not to mucosal or synovial HEV, and cross-reacts with the 85-95-kD Hermes-1 antigen. Furthermore, we show that Hermes-3, a novel antibody produced by immunization with Hermes-1 antigen isolated from a mucosal HEV-specific cell line, selectively blocks lymphocyte binding to mucosal HEV. Such tissue specificity of inhibition suggests that MEL-14 and Hermes-3 block the function of specific lymphocyte recognition elements for lymph node and mucosal HEV, respectively. Recognition of synovial HEV also involves the 85-95-kD Hermes-1 antigen, in that a polyclonal antiserum produced against the isolated antigen blocks all three classes of lymphocyte-HEV interaction. From these studies, it is likely that the Hermes-1-defined 85-95-kD glycoprotein class either comprises a family of related but functionally independent receptors for HEV, or associates both physically and functionally with such receptors. The findings imply that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.  相似文献   

9.
Lymphocytes migrate from blood into lymph nodes (LN) and Peyer's patches (PP) of rats specifically at segments of venules lined by high endothelium (HEV). We previously identified and isolated a lymphocyte surface component termed high endothelial binding factor (HEBF) that appears to be involved in lymphocyte adhesion to high endothelial cells of LN. HEBF has also been isolated from thoracic duct lymph and is antigenically related to the cell surface component. Soluble HEBF derived from detergent lysates of thoracic duct lymphocytes (TDL) or directly from lymph has affinity for HEVLN in vitro, and is able to block sites where lymphocytes would normally attach. In the present study, lymphocyte binding sites of HEVLN and HEVPP were investigated through the use of lymph-derived HEBF and rabbit antibody to this factor. The results show that treatment of rat TDL with anti-HEBF Fab did not block binding to HEVPP, even though adhesion to HEVLN was reduced by 80% or more. Similarly, HEBF isolated by anti-HEBF F(ab')2 affinity chromatography blocked lymphocyte binding sites of HEVLN but not HEVPP. This material is therefore designated HEBFLN, and antibody to it is designated anti-HEBFLN Ig. Fractionation of thoracic duct lymph revealed that it contained an antigenically distinct component, HEBFPP, which blocked lymphocyte binding to HEVPP but not to HEVLN. Lymph components precipitating between 40 and 60% (NH4)2SO4 saturation contained both factors, which were separated from the bulk of lymph proteins by DEAE-Sepharose chromatography and then from each other by fractionation on the anti-HEBFLN F(ab')2-Sepharose column. The unbound fraction from this column contained HEBFPP, which was then partially purified by CM-Sepharose filtration. HEBFPP appeared to be a glycoprotein because it was destroyed by trypsin, bound to lentil lectin, and was eluted with alpha-methyl-mannoside. Together, the results demonstrate the existence of two antigenically distinct species of HEBF, and imply that lymphocyte binding sites of HEVLN and HEVPP are structurally different. We interpret the results to mean that distinct high endothelial adhesion molecules on lymphocytes mediate their entry into LN and PP.  相似文献   

10.
We wished to determine whether human lymphocytes, like their murine counterparts, show organ-specific interactions with high endothelial venules (HEV). Functional HEV-binding ability was measured by an in vitro assay of lymphocyte adherence to HEV in frozen sections of human lymphoid tissues which was adapted from rodent systems. It was found that human lymphocytes bind selectively to HEV and that, whereas mature T lymphocytes bind preferentially to HEV in peripheral lymph nodes and tonsils, B lymphocytes show preferential binding to HEV in GALT. Moreover, by analyzing the binding characteristics of T4+ and T8+ T cell populations, it was found that T8+ cells adhere preferentially to HEV in GALT and mesenteric lymph nodes and tonsil, and that T4+ cells bind slightly better to HEV in peripheral lymph nodes. The above findings indicate that organ--specific lymphocyte-endothelial cell recognition mechanisms exist also in humans, and suggest that these mechanisms play an important role in normal and pathologic lymphocyte traffic.  相似文献   

11.
This report presents the results of an investigation designed to establish whether exposure of mice to ultraviolet radiation (UVR) is capable of influencing the factors that control the distribution of lymphoid cells in vivo. We found that such exposure resulted in a dramatic and long-lasting increase in the tropism of peripheral lymph nodes for circulating lymphoid cells. Termination of UVR exposure did not result in a reversal of this phenomenon. Since an increase in lymphocyte migration into the lymph nodes of UVR-exposed mice was apparent within 2 hr of infusion of the radiolabeled cells, we conclude that the homing assay data reflect a relatively increased binding of circulating lymphocytes to high endothelial venules (HEV) within the lymph nodes of irradiated animals. A histologic analysis of skin from UVR-exposed mice established that the dermal microvasculature had expanded in terms of size and number of vessels, a condition that also does not completely reverse after the termination of treatments. In spite of the increase in dermal microvasculature, very few inflammatory cells were detected in the irradiated skin site. These observations support our conclusion that the enhanced traffic of lymphocytes into peripheral lymph nodes of UVR-exposed mice occurs primarily via lymphocyte-HEV interactions rather than afferent drainage of the irradiated skin.  相似文献   

12.
The first step in the migration of lymphocytes out of the blood is adherence of lymphocytes to endothelial cells (EC) in the postcapillary venule. It is thought that in inflammatory reactions cytokines activate the endothelium to promote lymphocyte adherence and migration into the inflammatory site. Injection of IFN-gamma, IFN-alpha/beta, and TNF-alpha into the skin of rats stimulated the migration of small peritoneal exudate lymphocytes (sPEL) into the injection site, and these cytokines mediated lymphocyte recruitment to delayed-type hypersensitivity, sites of virus injection, and in part to LPS. The effect of cytokines on lymphocyte adherence to rat microvascular EC was examined. IFN-gamma, IFN-alpha/beta, IL-1, TNF-alpha, and TNF-beta increased the binding of small peritoneal exudate lymphocyte (sPEL) to EC. IFN-gamma was more effective and stimulated adherence at much lower concentrations than the other cytokines. IL-2 did not increase lymphocyte adherence. LPS strongly stimulated lymphocyte binding. Treatment of EC, but not sPEL, enhanced adhesion, and 24 h of treatment with IFN-gamma and IL-1 induced near maximal adhesion. Lymph node lymphocytes, which migrate poorly to inflammatory sites, adhered poorly to unstimulated and stimulated EC, whereas sPEL demonstrated significant spontaneous adhesion which was markedly increased by IFN-gamma, IL-1, and LPS. Spleen lymphocytes showed an intermediate pattern of adherence. Combinations of IFN-gamma and TNF-alpha were additive in stimulating sPEL-EC adhesion. Depletion of sPEL and spleen T cells by adherence to IFN-gamma stimulated EC decreased the in vivo migration of the lymphocytes to skin sites injected with IFN-gamma, IFN-alpha/beta, TNF-alpha, poly I:C, LPS, and to delayed-type hypersensitivity reactions by 50%, and significantly increased the migration of these cells to normal lymph nodes, as compared to unfractionated lymphocytes. Thus the cytokines and lymphocytes involved in migration to cutaneous inflammation in the rat stimulate lymphocyte adhesion to rat EC in vitro, and IFN-gamma stimulated EC appear to promote the selective adhesion of inflammatory site-seeking lymphocytes.  相似文献   

13.
The interactions of alloreactive T lymphocytes with the vascular endothelium were studied in an in vitro model of lymphocyte adherence to cultured human arterial endothelial cell (HAEC) monolayers. Donor-primed lymphocytes (DPL) were shown to have significantly greater adherence to donor HAEC than were third-party primed lymphocytes. Limiting dilution analysis of adherent DPL showed an enrichment of donor-reactive lymphocytes compared with nonadherent DPL. This study examines the allospecific nature of this increased lymphocyte adherence. HAEC constitutively express class I HLA Ag and can be induced by IFN-gamma to express class II Ag. DPL adherence to class I+ HAEC was inhibited only in the presence of mAb directed against class I Ag. DPL adherence to class I+ and class II+ HAEC was inhibited in the presence of mAb directed against class I and class II Ag. Class I- and class II-specific adherence was also shown to involve CD8 and CD4 molecules, respectively, whereas lymphocyte function-associated Ag do not appear to play a major role in long term alloreactive lymphocyte adherence to HAEC. These findings suggest that alloreactive lymphocyte adherence to HAEC is mediated by two mechanisms. One is based on allorecognition, primarily of HLA Ag, and the other is related to presumably non-Ag-specific interactions between activated lymphocytes and the vascular endothelium. The studies presented provide evidence to suggest that HLA-specific lymphocyte adherence to endothelium may significantly contribute to the development of alloreactive lymphocyte infiltrates within the allograft.  相似文献   

14.
To further define the underlying mechanisms of immune suppression induced by UV-B irradiation, we have examined the kinetics of homing patterns of in vitro UV-B-irradiated and gamma-irradiated-thoracic duct lymphocytes (TDL) compared to dendritic cells (DC). Our findings show that 111In-oxine-labeled TDL specifically home to the spleen, liver, lymph nodes, and bone marrow with subsequent recirculation of a large number of cells from the spleen to lymph nodes. In contrast, DC preferentially migrate to the spleen and liver with a relatively insignificant distribution to lymph nodes and an absence of subsequent recirculation. Splenectomy prior to cell injection significantly diverts the spleen-seeking DC to the liver but not to the lymph nodes, while the homing of TDL to lymph nodes is significantly increased. In vitro exposure of 111In-oxine labeled TDL to gamma irradiation does not significantly impair immediate homing to lymphoid tissues but inhibits cell recirculation between 3 and 24 hr. In contrast, gamma irradiation does not affect the tissue distribution of labeled DC, suggesting that DC are more radioresistant to gamma irradiation than TDL. Unlike the findings in animals injected with gamma-irradiated cells, UV-B irradiation virtually abolished the homing of TDL to lymph nodes and significantly reduced the homing of the spleen-seeking DC to the splenic compartment while a large number of cells were sequestered in the liver. The results of in vitro cell binding assay show that TDL, unlike DC, have the capacity to bind to high endothelial venules (HEV) within lymph node frozen sections while gamma and UV-B irradiation significantly inhibit the binding of TDL to lymph node HEV. These findings suggest that: (i) DC, unlike TDL, are unable to recirculate from blood to lymph nodes through HEV; (ii) although gamma irradiation impairs TDL recirculation, it does not affect DC tissue distribution; and (iii) UV-B irradiation impairs both TDL and DC migration patterns. We conclude that the lack of capacity of irradiated TDL to home to lymph nodes is due to damage to cell surface homing receptors and that the failure of DC to home to the lymph node microenvironment is related to the absence of HEV homing receptors on their cell surface.  相似文献   

15.
The adhesion of lymphocytes to endothelial cells lining the postcapillary high endothelial venules (HEV) is the first step in their emigration from the bloodstream into lymph nodes and Peyer's patches (PP). We have recently shown that the adhesiveness of cultured rat lymph node and PP HEV cells for thoracic duct lymphocytes can be increased significantly by pretreatment with TNF-alpha, IFN-gamma, and IL-4. In the present study we investigated the role of transforming growth factor-beta 1 (TGF-beta) on the adhesiveness of nonstimulated and cytokine-stimulated PP HEV cells for rat lymphocytes. The results indicated that at picomolar concentrations, TGF-beta significantly (p less than 0.001) decreased the ability of PP HEV cells to adhere 51Cr-labeled rat lymphocytes. Maximal inhibition was observed with a TGF-beta dose of 0.5 ng/ml and an incubation time of 6 to 12 h. TGF-beta did not affect the morphology of HEV cells and had no adverse effect on their viability. Moreover, the decrease in HEV adhesiveness by TGF-beta was reversible, with lymphocyte binding returning to control level 24 h after removal of the cytokine. The specificity of TGF-beta was confirmed by the ability of neutralizing anti-TGF-beta 1 antibody, but not control serum, to abolish the inhibitory properties of the cytokine. In addition, TGF-beta completely abrogated the increased adhesiveness of PP HEV cells normally induced by TNF-alpha or IFN-gamma. In contrast, TGF-beta had no effect on the stimulating effects of IL-4. Moreover, preincubation of PP HEV cells with TGF-beta did not alter the ability of these cells to respond to IL-4. Importantly, the adhesion of rat lymphocytes to IL-4-stimulated PP HEV cells can be blocked by pretreatment of lymphocytes with the PP-homing receptor-specific 1B.2.6 antibody whereas pretreatment of human mononuclear cells with anti-very late activation antigen-4 alpha antibody inhibited only partially the binding of these cells to the IL-4-stimulated PP HEV monolayers. Taken together, these findings strongly suggest that TGF-beta and IL-4 play important regulatory roles in lymphocyte-HEV adhesion and that the stimulatory effect of IL-4 is mediated at least in part through the increased expression of organ-specific ligands on HEV cells.  相似文献   

16.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

17.
Upon encountering the relevant vascular bed, lymphocytes attach to endothelial adhesion molecules, transmigrate out of circulation, and localize within tissues. Lymphocytes may then be retained at microanatomic sites, as in tissues, or they may continue to migrate to the lymphatics and recirculate in the blood. Lymphocytes also interact transiently, but with high avidity, with target cells or APC that are infected with microbes or have taken up exogenous foreign Ags. This array of adhesive capabilities is mediated by the selective expression of lymphocyte adhesion molecules. Here, we developed the 6F10 mAb, which recognizes a cell surface glycoprotein designated lymphocyte endothelial-epithelial cell adhesion molecule (LEEP-CAM), that is distinct in biochemical characteristics and distribution of expression from other molecules known to play a role in lymphocyte adhesion. LEEP-CAM is expressed on particular epithelia, including the suprabasal region of the epidermis, the basal layer of bronchial and breast epithelia, and throughout the tonsillar and vaginal epithelia. Yet, it is absent from intestinal and renal epithelia. Interestingly, it is expressed also on vascular endothelium, especially high endothelial venules (HEV) in lymphoid organs, such as tonsil and appendix. The anti-LEEP-CAM mAb specifically blocked T and B lymphocyte adhesion to monolayers of epithelial cells and to vascular endothelial cells in static cell-to-cell binding assays by approximately 40-60% when compared with control mAbs. These data suggest a role for this newly identified molecule in lymphocyte binding to endothelium, as well as adhesive interactions within selected epithelia.  相似文献   

18.
Pertussigen, a protein toxin purified from Bordetella pertussis, and fucoidin, a high molecular weight sulfated polysaccharide, were analyzed for their ability to inhibit lymphocyte recirculation in vivo. Pertussigen treatment of lymphocytes resulted in a dosage- and time-dependent loss of their ability to localize in lymph nodes or Peyer's patches. This toxin-induced alteration did not reverse after extended lymphocyte culture in toxin-free media, and had no effect on lymphocyte viability or activation by mitogens. Furthermore, pertussigen-treated lymphocytes retained the ability to specifically adhere to high endothelial cells in an in vitro binding assay. Kinetic studies suggested that the toxin's molecular action on lymphocytes is analogous to that reported for pancreatic islets and hormone-responsive cultured cell lines. Inhibition of lymphocyte recirculation by fucoidin was also observed in vivo. Fucoidin-mediated inhibition of lymphocyte localization to peripheral lymph nodes was reversible with time, and could not be effected by pretreatment of lymphocytes with the polysaccharide. Furthermore, we confirmed the observation that fucoidin blocks lymphocyte adhesion to high endothelial cells in vitro. On the basis of these observations, we propose that the mechanism of lymphocyte extravasation involves a specific receptor-mediated binding event followed by an adenylate cyclase-dependent activation of cell motility. Fucoidin is capable of interfering with the primary adhesion event, whereas pertussigen selectively inhibits the second process to block lymphocyte recirculation in vivo.  相似文献   

19.
Peripheral blood lymphocytes from skin graft-sensitized pigs will adhere in vitro to fresh donor-type large vessel endothelium, but do not spread out or migrate. Similar cells will however spread out on and migrate through monolayers of cultured donor-type aortic endothelium to a significantly greater extent than nonallergized lymphocytes. Cells sensitized in mixed lymphocyte culture at first exhibit a nonspecific increase in adherence and migration correlated with increased thymidine uptake, but after more prolonged incubation adherence becomes specific for stimulator-type endothelium. It is suggested that lymphocyte infiltration of an allograft in the presence of circulating sensitized cells involves a combination of nonspecific lymphocyte adhesion to endothelium, antigenic stimulation of “primed” cells to increased motility, endothelial penetration and lymphokine production, and soluble-factor-mediated stimulation of migration by nonsensitized cells.  相似文献   

20.
Recirculating lymphocytes initiate extravasation from the blood stream by binding to specialized high endothelial venules (HEV) within peripheral lymph nodes (PN) and other secondary lymphoid organs. We have previously reported that lymphocyte attachment to PN HEV is selectively inhibited by mannose-6-phosphate (M6P) and related carbohydrates (Stoolman, L. M., T. S. Tenforde, and S. D. Rosen, 1984, J. Cell Biol., 99:1535-1540). In the present study, we employ a novel cell-surface probe consisting of fluorescent beads derivatized with PPME, a M6P-rich polysaccharide. PPME beads directly identify a carbohydrate-binding receptor on the surface of mouse lymphocytes. In every way examined, lymphocyte attachment to PPME beads (measured by flow cytofluorometry) mimics the interaction of lymphocytes with PN HEV (measured in the Stamper-Woodruff in vitro assay): both interactions are selectively inhibited by the same panel of structurally related carbohydrates, are calcium-dependent, and are sensitive to mild treatment of the lymphocytes with trypsin. In addition, thymocytes and a thymic lymphoma, S49, bind poorly to PPME beads in correspondence to their weak ability to bind to HEV. When the S49 cell line was subjected to a selection procedure with PPME beads, the ability of the cells to bind PPME beads, as well as their ability to bind to PN HEV, increased six- to eightfold. We conclude that a carbohydrate-binding receptor on mouse lymphocytes, detected by PPME beads, is involved in lymphocyte attachment to PN HEV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号