首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Larvae of three species of anisakid nematode from fish, Anisakis simplex, Hysterothylacium aduncum and Contracaecum osculatum, were characterised genetically using a molecular approach. The nuclear ribosomal DNA region spanning the first internal transcribed spacer, the 5.8S gene and the second internal transcribed spacer was amplified and sequenced. The lengths of the first and second internal transcribed spacer sequences of the three species ranged from 392 to 449 bp and 262 to 347 bp, respectively, whereas the 5.8S sequence was 157 bp. For the three species, the G+C contents for the three regions of ribosomal DNA ranged from 42.4 to 52.2%. While no intraspecific variation was detected in the second internal transcribed spacer or 5.8S sequence of any species examined, one polymorphic nucleotide position was detected in the first internal transcribed spacer sequence for A. simplex and H. aduncum. The extent of sequence differences in the first (34–45%) and second (50–53%) internal transcribed spacers among the species was greater than in the 5.8S gene (3–5%). Based on the sequence differences, PCR-based restriction fragment length polymorphism and single-strand conformation polymorphism methods were established for the unequivocal delineation of the three species. These methods should provide valuable tools for studying the life-cycle, transmission pattern (s) and population structure of each of the three anisakid nematodes examined herein, and for the diagnosis of anisakiasis in humans and animals.  相似文献   

2.
The nucleotide sequences of the first and second internal transcribed spacers of nuclear ribosomal DNA were determined for adults of Cylicostephanus minutus from different geographical origins. The lengths of first and second internal transcribed spacer sequences ranged from 370 to 372bp and 215 to 216bp, respectively. Pairwise sequence comparisons revealed that some individuals of C. minutus had identical first and second internal transcribed spacer sequences, whereas others differed by 3.0% and 7.4% in their first and second transcribed spacers, respectively. Some individuals with sequence differences originated from the same host. The levels of difference within C. minutus were higher than that between the morphologically distinct species, Cylicostephanus goldi and Cylicostephanus longibursatus (0.8% for the first internal transcribed spacer and 3.8% for the second internal transcribed spacer). The data provide support for the proposal that C. minutus represents a complex of at least two species. In order to study the population genetic structure of C. minutus, a PCR-linked single-strand conformation polymorphism technique was also established.  相似文献   

3.
4.
The location of the 5.88 rDNA within the internal transcribed spacer has been found by restriction and sequence analysis. These analyses indicate the deletion of a dinucleotide from the known rRNA sequence. Regions to the 5' and 3' of the gene contain both uncommon sequences and palindromic structures which might provide potential control points. A secondary structure model is suggested for the 5.8S rRNA incorporating the flanking sequences.  相似文献   

5.
6.
Sequence analysis of genomic DNA from the protozoan parasite Perkinsus marinus at two loci revealed genetic polymorphisms within and among different cultured isolates. Genomic DNA from 12 Perkinsus marinus isolates was amplified at the internal transcribed spacer region and at an anonymous locus previously identified to contain polymorphisms by restriction fragment length polymorphism analysis. Fourteen polymorphic nucleotide positions were identified at the internal transcribed spacer region; eight in internal transcribed spacer 1 and six in internal transcribed spacer 2. Thirteen polymorphic nucleotide sites were identified within the anonymous locus. In some instances, more than three different sequences were observed at both the internal transcribed spacer region and at the anonymous locus from a single clonal isolate, suggesting the possibility of recombination in cultured cells and/or strand jumping during the polymerase chain reaction. Intra-isolate sequence variation (3.46% for the anonymous locus and 3.08% for internal transcribed spacer 1) was in several cases as high as inter-isolate sequence variation, even in one isolate where recombination was not evident. High intra- and inter-isolate variation detected at both loci demonstrates the importance of determining the genetic variation of each locus prior to development of sequence-based molecular diagnostics.  相似文献   

7.
亚稀褶黑菇和稀褶黑菇的ITS序列分析   总被引:1,自引:0,他引:1  
对亚稀褶黑菇和稀褶黑菇的ITS全序列进行了测定和比较,首次报道了亚稀褶黑菇的ITS1和5.8S区域.在ITS区域中,不同采集地的亚稀褶黑菇与稀褶黑菇的5.8S rDNA具有100%的同源性,而两侧ITS之间表现出种内和种间的多态性,种内的差异均不超过5%,种间的差异达10%左右.ITS序列分析方法可以作为两者的鉴定方法.  相似文献   

8.
对亚稀褶黑菇和稀褶黑菇的ITS全序列进行了测定和比较,首次报道了亚稀褶黑菇的ITS1和5.8S区域。在ITS区域中,不同采集地的亚稀褶黑菇与稀褶黑菇的5.8S rDNA具有100%的同源性,而两侧ITS之间表现出种内和种间的多态性,种内的差异均不超过5%,种间的差异达10%左右。ITS序列分析方法可以作为两者的鉴定方法。  相似文献   

9.
C Chambers  S K Dutta  R J Crouch 《Gene》1986,44(1):159-164
Using [32P]DNA probes from a clone containing 17S, 5.8S and 26S rRNA of Neurospora crassa, the remainder of the repeat unit (RU) for ribosomal DNA (rDNA) has been cloned. Combining restriction analysis of the cloned DNA and restriction digests of genomic DNA, the RU was found to be 8.7 kb. The nucleotide sequence was determined for the internal transcribed spacer (ITS) regions one and two, for 5.8S rRNA and for portions of 17S and 26S rRNAs immediately flanking the ITS regions, and compared to the corresponding region of Saccharomyces carlsbergensis. In addition, a comparative restriction analysis of two other Neurospora species was performed using twelve restriction endonucleases. Genomic DNA blots of rDNA from N. intermedia and N. sitophila revealed rDNA RUs of 8.4 kb. The majority of differences in restriction patterns were confined to sequences outside the mature rRNA regions. However, one SmaI recognition site was found in 26S rRNA of N. crassa and N. sitophila but not in N. intermedia.  相似文献   

10.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

11.
The nuclear rRNA gene of Ophiostoma piliferum was analyzed to understand its phylogenetic relationships to other sapstain fungi. Phylograms based on nucleotide sequences of the rRNA gene showed that the relationships between O. piliferum and other Ophiostoma species varied depending on the regions of the rRNA gene analyzed. Intraspecies variation in O. piliferum was found in the internal transcribed spacer regions, and the variation was related to the geographic origin of O. piliferum strains. A useful molecular marker for differentiating O. piliferum from other sapstain Ophiostoma species was generated by the HaeIII restriction fragment length polymorphism of the 26S rRNA gene.  相似文献   

12.
13.
The nuclear ribosomal DNA (rDNA) region spanning 5.8S rDNA and the second internal transcribed spacer (ITS-2) of Baylisascaris schroederi isolated from the Qinling subspecies of giant panda in Shaanxi Province, China were amplified and sequenced. Sequence variations in the two rDNA regions within B. schroederi and among species in the family Ascarididae were examined. The lengths of B. schroederi 5.8S and ITS-2 rDNA sequences were 156 bp and 327 bp, respectively, and no nucleotide variation was found in these two rDNA regions among the 20 B. schroederi samples examined, and these ITS-2 sequences were identical to that of B. schroederi isolated from giant panda in Sichuan province, China. The inter-species differences in 5.8S and ITS-2 rDNA sequences among members of the family Ascarididae were 0-1.3% and 0-17.7%, respectively. Phylogenetic relationships among species in the Ascarididae were re-constructed by Bayesian inference (Bayes), maximum parsimony (MP), and maximum likelihood (ML) analyses, based on combined sequences of 5.8S and ITS-2 rDNA. All B. schroederi samples clustered together and sistered to B. transfuga with high posterior probabilities/bootstrap values, which further confirmed that nematodes isolated from the Qinling subspecies of giant panda in Shaanxi Province, China represent B. schroederi. Because of the large number of ambiguously aligned sequence positions (difficulty of inferring homology by positions), ITS-2 sequence alone is likely unsuitable for phylogenetic analyses at the family level, but the combined 5.8S and ITS-2 rDNA sequences provide alternative genetic markers for the identification of B. schroederi and for phylogenetic analysis of parasites in the family Ascarididae.  相似文献   

14.
Cyclospora cayetanensis is a coccidian parasite which causes severe gastroenteritis in humans. Molecular information on this newly emerging pathogen is scarce. Our objectives were to assess genetic variation within and between human-associated C. cayetanensis and baboon-associated Cyclospora papionis by examining the internal transcribed spacer (ITS) region of the ribosomal RNA operon, and to develop an efficient polymerase chain reaction- (PCR)-based method to distinguish C. cayetanensis from other closely related organisms. For these purposes, we studied C. cayetanensis ITS-1 nucleotide variability in 24 human faecal samples from five geographic locations and C. papionis ITS-1 variability in four baboon faecal samples from Tanzania. In addition, a continuous sequence encompassing ITS-1, 5.8S rDNA and ITS-2 was determined from two C. cayetanensis samples. The results indicate that C. cayetanensis and C. papionis have distinct ITS-1 sequences, but identical 5.8S rDNA sequences. ITS-1 is highly variable within and between samples, but variability does not correlate with geographic origin of the samples. Despite this variability, conserved species-specific ITS-1 sequences were identified and a single-round, C. cayetanensis-specific PCR-based assay with a sensitivity of one to ten oocysts was developed. This consistent and remarkable diversity among Cyclospora spp. ITS-1 sequences argues for polyparasitism and simultaneous transmission of multiple strains.  相似文献   

15.
The relationship between Bifidobacterium lactis and Bifidobacterium animalis was examined by comparative analysis of tuf and recA gene sequences and by restriction fragment length polymorphism analysis of their internal 16S-23S transcribed spacer region sequences. The bifidobacterial strains investigated could be divided into two distinct groups within a single species based on the tuf, recA, and 16S-23S spacer region sequence analysis. Therefore, all strains of B. lactis and B. animalis could be unified as the species B. animalis and divided into two subspecies, Bifidobacterium animalis subsp. lactis and Bifidobacterium animalis subsp. animalis.  相似文献   

16.
Metastrongylus species are important parasites of free-range pigs and wild boar, but little is known about the genetic make-up of natural populations. This study was undertaken to examine sequence variation in internal transcribed spacer 2 of ribosomal DNA within and among three species of Metastrongylus using PCR-linked restriction fragment length polymorphism analysis. In contrast to many other species of bursate nematodes, significant intraspecific variation was detected in restriction fragment length polymorphism profiles among individual worms. In spite of this, it was possible to identify the three species by their distinctive restriction profiles. The findings suggest that the internal transcribed spacer 2 region should be useful for analysing population variation within Metastrongylus species.  相似文献   

17.
The nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has become an important nuclear locus for molecular systematic investigations of angiosperms at the intergenic and interspecific levels. Universal PCR primers are positioned on the conserved rRNA genes (18S, 5.8S, 26S) to amplify the entire ITS spacer region. Recent reports of fungal and algal contaminants, first described as plant ITS sequences, stress the need for diagnostic markers specific for the angiosperm ITS region. This report describes a conserved 14 base pair (bp) motif in the 5.8S rRNA gene that can be used to differentiate between flowering plants, bryophytes, and several orders of algae and fungi, including common plant pathogenic and non-pathogenic fungi. A variant of the motif (found in fungi and algae) contains a convenient EcoRI restriction site that has several applications for eliminating problematic contaminants from plant ITS preparations.  相似文献   

18.
Polymerase chain reaction–restriction fragment length polymorphism markers were developed to study populations of the fungal banana pathogen Mycosphaerella fijiensis. Twelve markers were defined, 11 in anonymous and single‐copy nuclear DNA sequences and one in the internal transcribed spacer and 5.8S rDNA sequence. The polymerase chain reaction products obtained with locus‐specific primer pairs were digested with restriction enzymes to reveal polymorphism. Between five and 12 markers were polymorph in M. fijiensis populations from different geographical origins (Papua New Guinea, the Philippines, Cameroon and Latin America). The mean of allele number and gene diversity (expected heterozygosity) per locus in the different geographical populations ranged between 1.4 and 2.7 and 0.17 and 0.45, respectively.  相似文献   

19.
The nucleotide sequence of the fragment of the internal transcribed spacer (ITS) of rDNA comprising the full-length ITS1, the gene encoding 5.8S rRNA, and part of the ITS2 sequence was determined in 22 samples of five diploid Aegilops species. The full alignment length of compared sequences was 524 bp. Species-specific substitutions were found in the ITS nucleotide sequence of rDNA of different Aegilops species. Intraspecific differences in ITS structure in diploid Aegilops species were detected for the first time. Polymorphism of the ITS nucleotide sequence within the same sample was revealed, which might be due either to differences between the genomes of individual plants comprising the sample or to the presence of several types of ribosomal genes in the genome of one plant. In general, both interspecific and intraspecific variability of the ITS nucleotide sequences of rDNA is extremely low. In total, 26 variable sites, twelve of which were informative, were identified.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 193–197.Original Russian Text Copyright © 2005 by Goryunova, Chikida, Gori, Kochieva.  相似文献   

20.
The ribosomal RNA genes in Entamoeba histolytica are located on circular DNA molecules in about 200 copies per genome equivalent. Nucleotide sequence analysis of the 5.8S rRNA gene and the flanking internal transcribed spacers was carried out to determine the degree of sequence divergence in the multiple rRNA gene copies of a given strain; amongst three different E. histolytica strains (HM-1:IMSS, Rahman and HK-9); and amongst four species of Entamoeba (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii and Entamoeba invadens). The results show that all rRNA gene copies of a given strain are identical. Few nucleotide positions varied between strains of a species but the differences were very pronounced amongst species. In general, the internal transcribed spacer 2 sequence was more variable and may be useful for strain- and species-identification. The 5.8S rRNA gene and the internal transcribed spacer 2 of E. invadens were unusually small in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号