首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.  相似文献   

2.
This study was undertaken to measure whether young harp seals (Phoca groenlandica) and hooded seals (Cystophora cristata) drink seawater and, if so, to investigate how the excess salt load is handled. Blood and urine samples were collected from hooded seal pups (n=3) and harp seal pups (n=3) after 2 weeks of freshwater exposure, at intervals during 3 weeks of seawater exposure and, finally, after 2 weeks of re-exposure to fresh water. Total water turnover, as measured by injection of tritiated water, was 2200 ml · day−1 and 3300 ml · day−1 in hooded seals and harp seals, respectively. The extent of mariposia was taken as the difference between total water turnover and influx of water through food (free and metabolic water) and respiratory water exchange. Seawater drinking amounted to 14% and 27% of total water turnover (rH2O) for the hooded seals and harp seals, respectively. Further evidence of mariposia was obtained from an increase in the excretion rate of the urine osmolytes Na+, Cl and Mg2+, during the period of seawater exposure. It is concluded that water influx due to seawater drinking can not be excluded as a source of error when estimating food consumption of free-ranging harp seals and hooded seals, by use of labeled water techniques. Accepted: 11 May 2000  相似文献   

3.
Photographic and visual aerial surveys to determine current pup production of Northwest Atlantic harp seals were conducted off Newfoundland and in the Gulf of St. Lawrence during March 1999-Photographic surveys were conducted on all whelping concentrations between 14 and 24 March, whereas a visual survey was made of the southern Gulf concentrations on 14 March. Pup production was estimated to be 739,100 (SE = 96,300, CV = 13.0%) at the Front, 82,600 (SE = 22,500, CV = 27.2%) in the northern Gulf, and 176,200 (SE = 25,400, CV = 14.4%) in the southern Gulf (Magdalen Island) for a total of 997,900 (SE = 102,100, 10.2%). Changes in aerial survey estimates indicate that pup production has increased since 1994. A new method to correct for the temporal change in the proportion of pups present on the ice was examined by fitting the percentage of pups observed in three age-dependent stages to a Normal distribution. The results were compared to those obtained from a more complex model used previously. The Simple model produced slightly higher, and hence more conservative, estimates of the proportion of births that had occurred before the time of the survey than the Complex model. When using the Simple model fewer assumptions regarding the start date of pupping and the proportion of older pups remaining on the ice were required, the herd had to be followed for a shorter period, and a more convenient means of calculating confidence limits was available.  相似文献   

4.
The pelagic and gregarious, low Arctic harp seal ( Phoca groenlandica ) is the most common seal species in most refuse faunas from coastal hunter-gatherer sites dating from the late Atlantic to the early Subboreal period ( ca. 4000-2000 cal B. C.) in the Baltic Sea. Our main objective was to examine the migration contra breeding population hypotheses regarding the Baltic harp seals. Analyses of epiphyseal fusion data and osteometry of archeological harp seal remains from 25 dwelling-sites suggest that a local breeding population established itself in the early Subboreal period. In the Middle Neolithic the rookery possibly was situated in the Baltic proper, south of Aland and west of Gotland. The mean adult size of the Baltic harp seals decreased, suggesting minimal genetic exchange with the north Atlantic Ocean population. Genetic drift, interspecific competition, and over-hunting by humans are all factors likely to have contributed to the eventual extinction of harp seals in the Baltic Sea.  相似文献   

5.
Trophic position, and often the source of feeding of predators in food webs, can be estimated using measurements of stable isotope ratios of nitrogen and carbon in predators and their prey. Muscle samples from 60 harp seals ( Pagophilus groenlandicus ) collected during May 1995 in nearshore waters of New foundland, Canada, were analyzed for δ13C and δ15N values. These values were compared with those for 63 prey samples representing seven species generally collected near the same area. Using diet-tissue isotopic fractionation factors derived from previous studies using captive animals, we infer a greater dependence of harp seals on lower trophic-level prey during April compared with results expected from exclusive diets of Atlantic cod ( Gadus morhua ), Atlantic herring ( Clupea harengus ), Greenland halibut ( Reinhardtius hippoglossoides ), or northern shrimp ( Pandalus borealis ). Our mean δ15N value for harp seals is lower than previous findings for seals collected on the winter whelping patch and may be a function of interannual or seasonal differences in diet. Subadult seals (aged 1-4 yr) had significantly lower δ15N values than adults (5 + yr), suggesting that older seals were feeding at a slightly higher trophic level.  相似文献   

6.
The gross anatomy of the gastrointestinal system of 12 harp seals ( Phoca groenlandica ) was investigated. Harp seals have a typical carnivore monogastric stomach. The tissue wet weight of the stomach of harp seals represented 27.01 (S.D. 3.99)% ( n = 12) of the total gastrointestinal tract (GI-tract). All animals were killed while resting on the ice, and had empty stomachs, but when expanded with water to a 30cm pressure the stomach contained 0.60 to 1.60 litres, representing 1.00 (S.D. 0.26)% ( n = 12) of the body mass. The small intestine ranged in length from 20.44 to 25.32m, being 14.36 (S.D. 1.58) times the body length, and the tissue wet weight constituted 67.61 (S.D. 4.55)% of the total GI-tract ( n = 12). Both caecum and colon were short, maximally 5 and 78 cm, respectively, being 0.022 (S.D. 0.005) and 0.38 (S.D. 0.06) times the body length ( n = 12). The caecum tissue wet weight was only 0.18 (S.D. 0.04)% of the total GI-tract weight, while the colon tissue wet weight contributed to 5.33 (S.D. 1.19)% ( n = 12). It is concluded that harp seals have relatively long intestines compared to minke whales eating a comparable diet in the North Atlantic Ocean.  相似文献   

7.
The effects of climate change on high latitude regions are becoming increasingly evident, particularly in the rapid decline of sea ice cover in the Arctic. Many high latitude species dependent on sea ice are being forced to adapt to changing habitats. Harp seals (Pagophilus groenlandicus) are an indicator species for changing high-latitude ecosystems. This study analyzed multiple factors including ice cover, demographics, and genetic diversity, which could affect harp seal stranding rates along the eastern coast of the United States. Ice cover assessments were conducted for the month of February in the Gulf of St. Lawrence whelping region from 1991–2010 using remote sensing data, and harp seal stranding data were collected over the same time period. Genetic diversity, which may affect how quickly species can adapt to changing climates, was assessed using ten microsatellite markers to determine mean d 2 in a subset of stranded and by-caught (presumably healthy) seals sampled along the northeast U.S. coast. Our study found a strong negative correlation (R 2 = 0.49) between ice cover in the Gulf of St. Lawrence and yearling harp seal strandings, but found no relationship between sea ice conditions and adult strandings. Our analysis revealed that male seals stranded more frequently than females during the study period and that this relationship was strongest during light ice years. In contrast, we found no significant difference in mean d 2 between stranded and by-caught harp seals. The results demonstrate that sea ice cover and demographic factors have a greater influence on harp seal stranding rates than genetic diversity, with only a little of the variance in mean d 2 among stranded seals explained by ice cover. Any changes in these factors could have major implications for harp seals, and these findings should be considered in the development of future management plans for the Arctic that incorporate climate variability.  相似文献   

8.
In phocid seals, blubber serves as the main thermal insulation instead of fur. The thermal function of fur, at least in adult phocid seals, has therefore been questioned. We measured the relative contribution of fur to the combined thermal resistance (insulation) offered by blubber, skin, and fur in newborn and adult harp ( Pagophilus groenlandicus ) and hooded ( Cystophora cristata ) seals, in air and water, to elucidate the role of fur as insulation in phocid seals. In air the fur contributed 90% of the combined thermal resistance of blubber, skin, and fur in newborn harp seal pups and 29% in adulrs, whereas in hooded seals the fur contributed 73% in newborn pups and 34% in adults. When submerged the thermal resistance of the fur was reduced by 84%-92%, and contributed 65% to the total insulation in newborn harp seal pups and 3% in adults, and 26% in newborn hooded seal pups and 5% in adults. We conclude that in air the fur of phocid seals makes an important contribution to the insulation of pups, and also contributes considerably to the insulation of adult animals. In water, even though the thermal resistance of the fur is dramatically reduced, the fur still contributes substantially to the insulation of pups, but its contribution in adults is negligible.  相似文献   

9.
To examine seasonal and inter-annual shifts in the energy requirements of captive harp seals (Phoca groenlandica), metabolic rate and body temperature were repeatedly measured over the annual cycle. Seasonal shifts were evident in both parameters, with spring and summer (April to September) peaks decreasing throughout fall and winter (October to March). Seasonal changes in oxygen consumption concur with earlier published reports and data presented here validate these trends inter-annually. The standard metabolic rates (SMRs) of all seals were lower than predicted during fall/winter, but were indistinguishable from expected rates during spring/summer. Although individual variation in metabolic rate was largely independent of changes in both total body mass and predicted total body fat over the year, such variation was more closely related to changes in predicted lean body mass. Both deep rectal and core body temperatures co-varied with metabolic rate, perhaps indicating a metabolic defense of fat for thermoregulation. The implications of these shifting basal requirements are considered in the light of calculating the impact of the harp seal herd on fisheries resources in the Northwest Atlantic. Received: 18 December 1996 / Accepted: 30 April 1997  相似文献   

10.
The metabolic rate of harp (Pagophilus groenlandicus), harbor (Phoca vitulina), and ringed seals (Pusa hispida) was measured at various temperatures in air and water to estimate basal metabolic rates (BMRs) in these species. The basal rate and body composition of three harp seals were also measured throughout the year to examine the extent to which they vary seasonally. Marine mammalian carnivores generally have BMRs that are over three times the rates expected from body mass in mammals generally, both as a response to a cold-water distribution and to carnivorous food habits with the basal rates of terrestrial carnivores averaging about 1.8 times the mean of mammals. Phocid seals, however, have basal rates of metabolism that are 30% lower than other marine carnivores. Captive seals undergo profound changes in body mass and food consumption throughout the year, and after accounting for changes in body mass, the lowest rate of food intake occurs in summer. Contrary to earlier observations, harp seals also have lower basal rates during summer than during winter, but the variation in BMR, relative to mass expectations, was not associated with changes in the size of fat deposits. The summer reduction in energy expenditure and food consumption correlated with a reduction in BMR. That is, changes in BMR account for a significant portion of the seasonal variation in energy expenditure in the harp seal. Changes in body mass of harp seals throughout the year were due not only to changes in the size of body fat deposits, but also to changes in lean body mass. These results suggest that bioenergetics models used to predict prey consumption by seals should include time-variant energy requirements.  相似文献   

11.
Arctic food webs are being impacted by borealisation and environmental change. To quantify the impact of these multiple forcings, it is crucial to accurately determine the temporal change in key ecosystem metrics, such as trophic position of top predators. Here, we measured stable nitrogen isotopes (δ15N) in amino acids in harp seal teeth from across the North Atlantic spanning a period of 60 years to robustly assess multi-decadal trends in harp seal trophic position, accounting for changes in δ15N at the base of the food web. We reveal long-term variations in trophic position of harp seals which are likely to reflect fluctuations in prey availability, specifically fish- or invertebrate-dominated diets. We show that the temporal trends in harp seal trophic position differ between the Northwest Atlantic, Greenland Sea and Barents Sea, suggesting divergent changes in each local ecosystem. Our results provide invaluable data for population dynamic and ecotoxicology studies.  相似文献   

12.
 This study reports the findings of an integrated, comprehensive analysis of lactation energetics in harp seals conducted using longitudinal measurements of mass, body composition and milk composition from mother-pup pairs in conjunction with water flux measurements in pups. The nursing period of harp seals is a short, intense and relatively efficient period of energy transfer from mothers to pups. The average daily milk intake for pups was 3.65±0.24 kg which is equivalent to 79.5 MJ of energy. Eighty-one per cent of the energy received in the milk was metabolisable and 66% of the energy was stored by the pups as body tissue. The field metabolic rate of pups was 3.9±0.4 time basal metabolic rate. The pups were growing at a rate of 2.2 kg per day during the nursing period. The distribution of this mass gain varied in terms of tissue composition, depending on the age of the pups, but over the whole nursing period approximately half of the tissue was stored as fat. Harp seal mothers lost an average of 3.1 kg per day during lactation which was composed of 37% water, 50% fat, 11% protein and 2% ash. Mothers spent half of their time during the lactation period actively diving and only one-third of their time on the surface of the ice. Milk compositional changes followed the normal phocid pattern with increasing fat content and decreasing water content as lactation progressed. The mean mass transfer efficiency was 73%. However, this value cannot be used without qualification because female harp seals in this study fed to varying degrees, consuming an estimated 0–4.8 kg of fish per day. Feeding does not appear to be required in order to achieve the energy requirements for lactation, given the energy stores possessed by females, and some females do fast through the entire period so feeding may be considered opportunistic in nature. Accepted: 25 April 1996  相似文献   

13.
The feeding habits of harp seals (Phoca groenlandica) in the Barents Sea were examined in studies conducted during June 1991, September 1990 and 1991, and October 1992. Analyses of stomach and intestinal contents were carried out and concurrent estimates of prey abundance were made using trawl gear. Harp seals appeared to feed at low intensity in the pack ice belt during the first half of June. There was little potential prey in the water column, but prawns (Pandalus borealis), capelin (Mallotus villosus) and polar cod (Boreogadus saida) were abundant close to the bottom. In September, the seals sampled in the northern pack ice areas of the Barents Sea fed on the pelagic amphipod Parathemisto libellula, krill (Thysanoessa spp.), prawns and, to a lesser extent, on fish species such as polar cod, sculpins (Cottidae) and snailfish (Liparidae). Trawling revealed that large quantities of Parathemisto libellala were present in the upper layers of the water column. Fish, mainly capelin and polar cod, were less abundant and occurred in deeper waters. In mid-October, the diet of seals in the northern Barents Sea consisted mainly of amphipods (Parathemisto sp.). Later in October, when increasing pack ice cover forced the harp seals to move south, the diet seemed to change from amphipods to fish prey, predominantly capelin and polar cod.  相似文献   

14.
Rapid climate changes are occurring in the Arctic, with substantial repercussions for arctic ecosystems. It is challenging to assess ecosystem changes in remote polar environments, but one successful approach has entailed monitoring the diets of upper trophic level consumers. Quantitative fatty acid signature analysis (QFASA) and fatty acid carbon isotope (δ13C‐FA) patterns were used to assess diets of East Greenland (EG) polar bears (Ursus maritimus) (n = 310) over the past three decades. QFASA‐generated diet estimates indicated that, on average, EG bears mainly consumed arctic ringed seals (47.5 ± 2.1%), migratory subarctic harp (30.6 ± 1.5%) and hooded (16.7 ± 1.3%) seals and rarely, if ever, consumed bearded seals, narwhals or walruses. Ringed seal consumption declined by 14%/decade over 28 years (90.1 ± 2.5% in 1984 to 33.9 ± 11.1% in 2011). Hooded seal consumption increased by 9.5%/decade (0.0 ± 0.0% in 1984 to 25.9 ± 9.1% in 2011). This increase may include harp seal, since hooded and harp seal FA signatures were not as well differentiated relative to other prey species. Declining δ13C‐FA ratios supported shifts from more nearshore/benthic/ice‐associated prey to more offshore/pelagic/open‐water‐associated prey, consistent with diet estimates. Increased hooded seal and decreased ringed seal consumption occurred during years when the North Atlantic Oscillation (NAO) was lower. Thus, periods with warmer temperatures and less sea ice were associated with more subarctic and less arctic seal species consumption. These changes in the relative abundance, accessibility, or distribution of arctic and subarctic marine mammals may have health consequences for EG polar bears. For example, the diet change resulted in consistently slower temporal declines in adipose levels of legacy persistent organic pollutants, as the subarctic seals have higher contaminant burdens than arctic seals. Overall, considerable changes are occurring in the EG marine ecosystem, with consequences for contaminant dynamics.  相似文献   

15.
Ringed seal (Pusa hispida) abundance in Spitsbergen, Svalbard, was estimated during the peak molting period via aerial, digital photographic surveys. A total of 9,145 images, covering 41.7%–100% of the total fast‐ice cover (1,496 km2) of 18 different fjords and bays, were inspected for the presence of ringed seals. A total of 1,708 seals were counted, and when accounting for ice areas that were not covered by images, a total of 3,254 (95% CI: 3,071–3,449) ringed seals were estimated to be hauled out during the surveys. Extensive behavioral data from radio‐tagged ringed seals (collected in a companion study) from one of the highest density fjords during the molting period were used to create a model that predicts the proportion of seals hauled out on any given date, time of day, and under various meteorological conditions. Applying this model to the count data from each fjord, we estimated that a total of 7,585 (95% CI: 6,332–9,085) ringed seals were present in the surveyed area during the peak molting period. Data on interannual variability in ringed seal abundance suggested higher numbers of seals in Van Keulenfjorden in 2002 compared to 2003, while other fjords with very stable ice cover showed no statistical differences. Poor ice conditions in general in 2002 probably resulted in seals from a wide area coming to Van Keulenfjorden (a large fjord with stable ice in 2002). The total estimated number of ringed seals present in the study area at the time of the survey must be regarded as a population index, or at least a minimum estimate for the area, because it does not account for individuals leaving and arriving, which might account for a considerable number of animals. The same situation is likely the case for many other studies reporting aerial census data for ringed seals. To achieve accurate estimates of population sizes from aerial surveys, more extensive knowledge of ringed seal behavior will be required.  相似文献   

16.
Lactating female harp seals, most with their pups, were collected on the "whelping" ice in the Gulf of St. Lawrence in 1976 and from 1978 to 1980. During lactation females lost weight at an average rate of 3.17±0.52 (SEb) kg d−1, for a total energy loss of approximately 250000 kcal. Pups grew at a mean rate of 2.78±0.19 kg d−1 for a gain in production energy of about 194000 kcal. Compared to 1976, adult females sampled in 1978 to 1980 had lower energy reserves at the onset of lactation. Coincidentally there has been a decrease in newborn lengths and girths. Although compensatory growth in weight appears to occur, between-year differences in newborn lengths persist to weaning. Various reproductive strategies of female harp seals faced with reduced energy stores are discussed.  相似文献   

17.
We studied energetics and food utilization in young elephant seals as they were first introduced to solid food following their long post-weaning fast. Using radioactive tracer techniques, we monitored changes in body composition, protein metabolism, and metabolic rate during fasting and initial feeding. In fasting animals, fat stores supplied nearly all energetic requirements. In feeding animals, 49% of protein ingested was retained as body tissue, allowing protein mass to increase. Body fat was lost at rates comparable to rates in fasting animals and continued to fuel the bulk of metabolism. Weight loss was arrested when animals consumed 786 g/d, or 40 kcal/kg0.75/d, which was far less than their metabolic rates (63–206 kcal/kg 0.75 /d). Surprisingly, the young seals were able to maintain weight and store protein while energy intake was below metabolic needs. This was possible because animals gained weight as water; they retained wellhydrated proteinaceous tissue while losing poorly-hydrated adipose tissue.  相似文献   

18.
Abstract: Bioelectrical impedance analysis (BIA) measures resistance and reactance of a current as it passes through an organism. The validity of using BIA as a tool to measure body water content, and hence body composition and condition, was tested on harp and ringed seals. The resistance and reactance readings from BIA were compared to estimates of total body water (TBW) determined via tritiated water dilution. The relationship between resistance and TBW (% of body mass) was linear after logarithmic transformation and the two variables were highly correlated. We describe the electrode configuration and placements which provide reliable results in these seals. Our findings indicate that BIA has considerable potential as an inexpensive, rapid, and reliable technique for estimating body composition of phocid seals.  相似文献   

19.
Two adult female leopard seals (Hydrurga leptonyx) were tagged with satellite-linked dive recorders off Queen Maud Land, Antarctica, just after moulting in mid-February. The transmitters transmitted for 80 and 220 days, respectively. Both seals remained within the pack ice relatively close to the Antarctic Continent until early May, when contact was lost with one seal. The one remaining seal then migrated north, to the east side of the South Sandwich Islands in 3 weeks, whereafter it headed east, until contact was lost at 55°S in early September. From mid-May to late September this animal always stayed close to the edge of the pack ice. Both seals made mostly short (<5 min) dives to depths of 10–50 m and only occasionally dove deeper than 200 m, the deepest dive recorded being 304 m. A nocturnal diving pattern was evident in autumn and early winter, while day-time diving prevailed in mid-winter. Haul out probability was highest at mid-day (about 40% in late February and more than 80% in March and April). From May till September the remaining animal mainly stayed at sea, in the vicinity of the pack ice, with only occasional haul outs. These data suggest that a portion of the adult leopard seals may spend the winter mainly in open water, off the edge of the pack ice, where they primarily hunt near the surface. In that case, it is likely that krill (Euphausia superba), as well as penguins, young crabeater seals (Lobodon carcinophaga) and a variety of fish are important prey items.  相似文献   

20.
INTERACTIONS BETWEEN SOUTH AFRICAN FUR SEALS and THE PURSE-SEINE FISHERY   总被引:2,自引:0,他引:2  
Operational interactions occur between South African (Cape) fur seals and the purse-seine fishery in South Africa. Seals eat fish from the nets but the main concern is the activity of seals causing fish to sound, resulting in loss, or partial loss of the catch. Detectable loss occurs on approximately 5% of hauls. In addition to this, smaller quantities may be lost on each haul as seals depress the net float line while moving into and out of the net. The cost of seal interference is difficult to quantify because the mass of fish lost is not known, and the loss is essentially one of additional fishing time required to fill the total allowable catch for the fishery. An estimate of the cost is calculated as between 1.6% and 4.1% of the landed value of the fishery. Some seals are killed by fishermen when they pose a potential threat to the safety of the crew aboard, and some may drown if caught in the net or pump. Overall this is probably fewer than a thousand seals per year. It is also known that if seals are thought to be disturbing the fish, these seals near the nets may be deliberately killed by purse-seine fishermen. Overall this mortality, whether deliberate or incidental, is probably negligible in terms of the population size of South African fur seals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号