首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
cdc28-1N is a conditional allele that has normal G1 (Start) function but confers a mitotic defect. We have isolated seven genes that in high dosage suppress the growth defect of cdc28-1N cells but not of Start-defective cdc28-4 cells. Three of these (CLB1, CLB2, and CLB4) encode proteins strongly homologous to G2-specific B-type cyclins. Another gene, CLB3, was cloned using PCR, CLB1 and CLB2 encode a pair of closely related proteins; CLB3 and CLB4 encode a second pair. Neither CLB1 nor CLB2 is essential; however, disruption of both is lethal and causes a mitotic defect. Furthermore, the double mutant cdc28-1N clb2::LEU2 is nonviable, whereas cdc28-4 clb2::LEU2 is viable, suggesting that the cdc28-1N protein may be defective in its interaction with B-type cyclins. Our results are consistent with CDC28 function being required in both G1 and mitosis. Its mitotic role, we believe, involves interaction with a family of at least four G2-specific cyclins.  相似文献   

2.
Cdc55, a B-type regulatory subunit of protein phosphatase 2A, has been implicated in mitotic spindle checkpoint activity and maintenance of sister chromatid cohesion during metaphase. The spindle checkpoint is composed of two independent pathways, one leading to inhibition of the metaphase-to-anaphase transition by checkpoint proteins, including Mad2, and the other to inhibition of mitotic exit by Bub2. We show that Cdc55 is a negative regulator of mitotic exit. A cdc55 mutant, like a bub2 mutant, prematurely releases Cdc14 phosphatase from the nucleolus during spindle checkpoint activation, and premature exit from mitosis indirectly leads to loss of sister chromatid cohesion and inviability in nocodazole. The role of Cdc55 is separable from Bub2 and inhibits release of Cdc14 through a mechanism independent of the known negative regulators of mitotic exit. Epistasis experiments indicate Cdc55 acts either downstream or independent of the mitotic exit network kinase Cdc15. Interestingly, the B-type cyclin Clb2 is partially stable during premature activation of mitotic exit in a cdc55 mutant, indicating mitotic exit is incomplete.  相似文献   

3.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

4.
In yeast, the protein phosphatase Cdc14 promotes chromosome segregation, mitotic exit, and cytokinesis by reversing M-phase phosphorylations catalyzed by Cdk1. A key feature of Cdc14 regulation is its sequestration within the nucleolus, which restricts its access to potential substrates for much of the cell cycle. Mammals also possess a nucleolar Cdc14 homolog, termed Cdc14B, but its roles during mitosis and cell division remain speculative. Here we analyze Cdc14B’s subcellular dynamics during mitosis and rigorously test its functional contributions to cell division through homozygous disruption of the Cdc14B locus in human somatic cells. While Cdc14B is initially released from nucleoli at the start of mitosis, the phosphatase quickly redistributes onto segregating sister chromatids during anaphase. This relocalization is mainly driven by Cdk1 inactivation, as pharmacologic inhibition of Cdk1 in prometaphase cells redirects Cdc14B onto chromosomes. However, in sharp contrast to yeast cdc14 mutants, human Cdc14BΔ/Δ cells were viable and lacked defects in spindle assembly, anaphase progression, mitotic exit, and cytokinesis, and continued to segregate ribosomal DNA repeats with near-normal proficiency. Our findings reveal substantial divergence in mitotic regulation between yeast and mammalian cells, as the latter possess efficient mechanisms for completing late M-phase events in the absence of a nucleolar Cdc14-related phosphatase.  相似文献   

5.
U Surana  A Amon  C Dowzer  J McGrew  B Byers    K Nasmyth 《The EMBO journal》1993,12(5):1969-1978
It is widely assumed that degradation of mitotic cyclins causes a decrease in mitotic cdc2/CDC28 kinase activity and thereby triggers the metaphase to anaphase transition. Two observations made on the budding yeast Saccharomyces cerevisiae are inconsistent with this scenario: (i) anaphase occurs in the presence of high levels of kinase in cdc15 mutants and (ii) overproduction of a B-type mitotic cyclin causes arrest not in metaphase as previously reported but in telophase. Kinase destruction is therefore implicated in the exit from mitosis rather than the entry into anaphase. The behaviour of esp1 mutants shows in addition that kinase destruction can occur in the absence of anaphase completion. The execution of anaphase and the destruction of CDC28 kinase activity therefore appear to take place independently of one another.  相似文献   

6.
Budding yeast polo kinase Cdc5p localizes to the spindle pole body (SPB) and to the bud-neck and plays multiple roles during M-phase progression. To dissect localization-specific mitotic functions of Cdc5p, we tethered a localization-defective N-terminal kinase domain of Cdc5p (Cdc5pDeltaC) to the SPB or to the bud-neck with components specifically localizing to one of these sites and characterized these mutants in a cdc5Delta background. Characterization of a viable, SPB-localizing, CDC5DeltaC-CNM67 mutant revealed that it is defective in timely degradation of Swe1p, a negative regulator of Cdc28p. Loss of BFA1, a negative regulator of mitotic exit, rescued the lethality of a neck-localizing CDC5DeltaC-CDC12 or CDC5DeltaC-CDC3 mutant but yielded severe defects in cytokinesis. These data suggest that the SPB-associated Cdc5p activity is critical for both mitotic exit and cytokinesis, whereas the bud neck-localized Cdc5p is required for proper Swe1p regulation. Interestingly, a cdc5Delta bfa1Delta swe1Delta triple mutant is viable but grows slowly, whereas cdc5Delta cells bearing both CDC5DeltaC-CNM67 and CDC5DeltaC-CDC12 grow well with only a mild cell cycle delay. Thus, SPB- and the bud-neck-localized Cdc5p control most of the critical Cdc5p functions and downregulation of Bfa1p and Swe1p at the respective locations are two critical factors that require Cdc5p.  相似文献   

7.
C Kühne  P Linder 《The EMBO journal》1993,12(9):3437-3447
Two new B-type cyclin genes from Saccharomyces cerevisiae, called CLB5 and CLB6, are located in a tail to tail arrangement adjacent to the G2/M phase promoting cyclins CLB2 and CLB1, respectively. These genomic cyclin arrays are flanked by tRNAs and repeated sequences of Ty elements suggesting an intrachromosomal gene duplication followed by an interchromosomal gene duplication. Based on their deduced protein sequence the CLB5 and CLB6 genes form a new pair of B-type cyclins. They are most related to each other and then to the deduced protein sequence of their adjacent genes CLB1 and CLB2. Both genes are periodically expressed, peaking early in the cell cycle. Loss of function mutants are viable, but clb5- mutants exhibit a delay in S phase whereas clb6- mutants show a delay in late G1 and/or S phase. The clb5 mutant phenotype is somewhat more pronounced in a double null mutant. Both cyclins have the potential to interact with the p34CDC28 kinase in vivo.  相似文献   

8.
BACKGROUND: The life cycle of most eukaryotic organisms includes a meiotic phase, in which diploid parental cells produce haploid gametes. During meiosis a single round of DNA replication is followed by two rounds of chromosome segregation. In the first, or reductional, division (meiosis I), which is unique to meiotic cells, homologous chromosomes segregate from one another, whereas in the second, or equational, division (Meiosis II) sister centromeres disjoin. Meiotic DNA replication precedes the initiation of recombination by programmed Spo11-dependent DNA double-strand breaks. Recent reports that meiosis-specific cohesion is established during meiotic S phase and that the length of S phase is modified by recombination factors (Spo11 and Rec8) raise the possibility that replication plays a fundamental role in the recombination process. RESULTS: To address how replication influences the initiation of recombination, we have used mutations in the B-type cyclin genes CLB5 and CLB6, which specifically prevent premeiotic replication in the yeast Saccharomyces cerevisiae. We find that clb5 and clb5 clb6 but not clb6 mutants are defective in DSB induction and prior associated changes in chromatin accessibility, heteroallelic recombination, and SC formation. The severity of these phenotypes in each mutant reflects the extent of replication impairment. CONCLUSIONS: This assemblage of phenotypes reveals roles for CLB5 and CLB6 not only in DNA replication but also in other key events of meiotic prophase. Links between the function of CLB5 and CLB6 in activating meiotic DNA replication and their effects on subsequent events are discussed.  相似文献   

9.
Cai T  Aulds J  Gill T  Cerio M  Schmitt ME 《Genetics》2002,161(3):1029-1042
We have identified a cell cycle delay in Saccharomyces cerevisiae RNase MRP mutants. Mutants delay with large budded cells, dumbbell-shaped nuclei, and extended spindles characteristic of "exit from mitosis" mutants. In accord with this, a RNase MRP mutation can be suppressed by overexpressing the polo-like kinase CDC5 or by deleting the B-type cyclin CLB1, without restoring the MRP-dependent rRNA-processing step. In addition, we identified a series of genetic interactions between RNase MRP mutations and mutations in CDC5, CDC14, CDC15, CLB2, and CLB5. As in most "exit from mitosis" mutants, levels of the Clb2 cyclin were increased. The buildup of Clb2 protein is not the result of a defect in the release of the Cdc14 phosphatase from the nucleolus, but rather the result of an increase in CLB2 mRNA levels. These results indicate a clear role of RNase MRP in cell cycle progression at the end of mitosis. Conservation of this function in humans may explain many of the pleiotropic phenotypes of cartilage hair hypoplasia.  相似文献   

10.
The previously described CLB1 and CLB2 genes encode a closely related pair of B-type cyclins. Here we present the sequences of another related pair of B-type cyclin genes, which we term CLB3 and CLB4. Although CLB1 and CLB2 mRNAs rise in abundance at the time of nuclear division, CLB3 and CLB4 are turned on earlier, rising early in S phase and declining near the end of nuclear division. When all possible single and multiple deletion mutants were constructed, some multiple mutations were lethal, whereas all single mutants were viable. All lethal combinations included the clb2 deletion, whereas the clb1 clb3 clb4 triple mutant was viable, suggesting a key role for CLB2. The inviable multiple clb mutants appeared to have a defect in mitosis. Conditional clb mutants arrested as large budded cells with a G2 DNA content but without any mitotic spindle. Electron microscopy showed that the spindle pole bodies had duplicated but not separated, and no spindle had formed. This suggests that the Clb/Cdc28 kinase may have a relatively direct role in spindle formation. The two groups of Clbs may have distinct roles in spindle formation and elongation.  相似文献   

11.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

12.
Coordination of mitotic exit with timely initiation of cytokinesis is critical to ensure completion of mitotic events before cell division. The Saccharomyces cerevisiae polo kinase Cdc5 functions in a pathway leading to the degradation of mitotic cyclin Clb2, thereby permitting mitotic exit. Here we provide evidence that Cdc5 also plays a role in regulating cytokinesis and that an intact polo-box, a conserved motif in the noncatalytic COOH-terminal domain of Cdc5, is required for this event. Depletion of Cdc5 function leads to an arrest in cytokinesis. Overexpression of the COOH-terminal domain of Cdc5 (cdc5DeltaN), but not the corresponding polo-box mutant, resulted in connected cells. These cells shared cytoplasms with incomplete septa, and possessed aberrant septin ring structures. Provision of additional copies of endogenous CDC5 remedied this phenotype, suggesting a dominant-negative inhibition of cytokinesis. The polo-box-dependent interactions between Cdc5 and septins (Cdc11 and Cdc12) and genetic interactions between the dominant-negative cdc5DeltaN and Cyk2/Hof1 or Myo1 suggest that direct interactions between cdc5DeltaN and septins resulted in inhibition of Cyk2/Hof1- and Myo1-mediated cytokinetic pathways. Thus, we propose that Cdc5 may coordinate mitotic exit with cytokinesis by participating in both anaphase promoting complex activation and a polo-box-dependent cytokinetic pathway.  相似文献   

13.
Puf5, a Puf-family RNA-binding protein, binds to 3´ untranslated region of target mRNAs and negatively regulates their expression in Saccharomyces cerevisiae. The puf5Δ mutant shows pleiotropic phenotypes including a weakened cell wall, a temperature-sensitive growth, and a shorter lifespan. To further analyze a role of Puf5 in cell growth, we searched for a multicopy suppressor of the temperature-sensitive growth of the puf5Δ mutant in this study. We found that overexpression of CLB2 encoding B-type cyclin suppressed the temperature-sensitive growth of the puf5Δ mutant. The puf5Δ clb2Δ double mutant displayed a severe growth defect, suggesting that Puf5 positively regulates the expression of a redundant factor with Clb2 in cell cycle progression. We found that expression of CLB1 encoding a redundant B-type cyclin was decreased in the puf5Δ mutant, and that this decrease of the CLB1 expression contributed to the growth defect of the puf5Δ clb2Δ double mutant. Since Puf5 is a negative regulator of the gene expression, we hypothesized that Puf5 negatively regulates the expression of a factor that represses CLB1 expression. We found such a repressor, Ixr1, which is an HMGB (High Mobility Group box B) protein. Deletion of IXR1 restored the decreased expression of CLB1 caused by the puf5Δ mutation and suppressed the growth defect of the puf5Δ clb2Δ double mutant. The expression of IXR1 was negatively regulated by Puf5 in an IXR1 3´ UTR-dependent manner. Our results suggest that IXR1 mRNA is a physiologically important target of Puf5, and that Puf5 and Ixr1 contribute to the cell cycle progression through the regulation of the cell cycle-specific expression of CLB1.  相似文献   

14.
DeCesare JM  Stuart DT 《Genetics》2012,190(3):1001-1016
The Saccharomyces cerevisiae cyclin Clb5 is required for premeiotic S phase, meiotic recombination, and successful progression through meiosis. Clb5 is not essential for mitotic proliferation because Clb1-Clb4 can support DNA replication in clb5 clb6 mutants. Clb1, Clb3, and Clb4 accumulate in clb5 clb6 cells during meiotic differentiation yet fail to promote premeiotic DNA replication. When expressed under the regulation of the CLB5 promoter, Clb1 and Clb3 accumulate and are active in the early stages of meiotic differentiation but cannot induce premeiotic DNA replication, suggesting that they do not target Cdk1 to the necessary substrates. The Clb5 hydrophobic patch (HP) residues are important for Clb5 function but this motif alone does not provide the specificity required for Clb5 to induce premeiotic S phase. Domain exchange experiments demonstrated that the amino terminus of Clb5 when fused to Clb3 confers upon Clb3 the ability to induce premeiotic S phase. Chimeric cyclins containing smaller regions of the Clb5 amino terminus displayed reduced ability to activate premeiotic DNA replication despite being more abundant and having greater associated histone H1 kinase activity than endogenous Clb5. These observations suggest that Clb5 has a unique ability to trigger premeiotic S phase and that the amino-terminal region of Clb5 contributes to its specificity and regulates the functions performed by the cyclin-Cdk complex.  相似文献   

15.
In budding yeast Saccharomyces cerevisiae, Cdc5 kinase is a component of mitotic exit network (MEN), which inactivates cyclin-dependent kinase (CDK) after chromosome segregation. cdc5-1 mutants arrest at telophase at the nonpermissive temperature due to the failure of CDK inactivation. To identify more negative regulators of MEN, we carried out a genetic screen for genes that are toxic to cdc5-1 mutants when overexpressed. Genes that encode the B-regulatory subunit (Cdc55) and the three catalytic subunits (Pph21, Pph22, and Pph3) of phosphatase 2A (PP2A) were isolated. In addition to cdc5-1, overexpression of CDC55, PPH21, or PPH22 is also toxic to other temperature-sensitive mutants that display defects in mitotic exit. Consistently, deletion of CDC55 partially suppresses the temperature sensitivity of these mutants. Moreover, in the presence of spindle damage, PP2A mutants display nuclear localized Cdc14, the key player in MEN pathway, indicative of MEN activation. All the evidence suggests the negative role of PP2A in mitotic exit. Finally, our genetic and biochemical data suggest that PP2A regulates the phosphorylation of Tem1, which acts at the very top of MEN pathway.  相似文献   

16.
The Schizosaccharomyces pombe checkpoint protein Dma1 couples mitotic progression with cytokinesis and is important in delaying mitotic exit and cytokinesis when kinetochores are not properly attached to the mitotic spindle. Dma1 is a ubiquitin ligase and potential functional relative of the human tumor suppressor Chfr. Dma1 delays mitotic exit and cytokinesis by ubiquitinating a scaffold protein (Sid4) of the septation initiation network, which, in turn, antagonizes the ability of the Polo-like kinase Plo1 to promote cell division. Here we identify Dnt1 as a Dma1-binding protein. Several lines of evidence indicate that Dnt1 inhibits Dma1 function during metaphase. First, Dnt1 interacts preferentially with Dma1 during metaphase. Second, Dma1 ubiquitin ligase activity and Sid4 ubiquitination are elevated in dnt1 cells. Third, the enhanced mitotic defects in dnt1Δ plo1 double mutants are partially rescued by deletion of dma1(+), suggesting that the defects in dnt1 plo1 double mutants are attributable to excess Dma1 activity. Taken together, these data show that Dnt1 acts to restrain Dma1 activity in early mitosis to allow normal mitotic progression.  相似文献   

17.
The ability of Candida albicans to switch cellular morphologies is crucial for its ability to cause infection. Because the cell cycle machinery participates in Saccharomyces cerevisiae filamentous growth, we characterized in detail the two C. albicans B-type cyclins, CLB2 and CLB4, to better understand the molecular mechanisms that underlie the C. albicans morphogenic switch. Both Clb2p and Clb4p levels are cell cycle regulated, peaking at G2/M and declining before mitotic exit. On hyphal induction, the accumulation of the G1 cyclin Cln1p was prolonged, whereas the accumulation of both Clb proteins was delayed when compared with yeast form cells, indicating that CLB2 and CLB4 are differentially regulated in the two morphologies and that the dynamics of cyclin appearance differs between yeast and hyphal forms of growth. Clb2p-depleted cells were inviable and arrested with hyper-elongated projections containing two nuclei, suggesting that Clb2p is not required for entry into mitosis. Unlike Clb2p-depleted cells, Clb4p-depleted cells were viable and formed constitutive pseudohyphae. Clb proteins lacking destruction box domains blocked cell cycle progression resulting in the formation of long projections, indicating that both Clb2p and Clb4p must be degraded before mitotic exit. In addition, overexpression of either B-type cyclin reduced the extent of filamentous growth. Taken together, these data indicate that Clb2p and Clb4p regulate C. albicans morphogenesis by negatively regulating polarized growth.  相似文献   

18.
Chromosome segregation, mitotic exit, and cytokinesis are executed in this order during mitosis. Although a scheme coordinating sister chromatid separation and initiation of mitotic exit has been proposed, the mechanism that temporally links the onset of cytokinesis to mitotic exit is not known. Exit from mitosis is regulated by the mitotic exit network (MEN), which includes a GTPase (Tem1) and various kinases (Cdc15, Cdc5, Dbf2, and Dbf20). Here, we show that Dbf2 and Dbf20 functions are necessary for the execution of cytokinesis. Relocalization of these proteins from spindle pole bodies to mother daughter neck seems to be necessary for this role because cdc15-2 mutant cells, though capable of exiting mitosis at semipermissive temperature, are unable to localize Dbf2 (and Dbf20) to the "neck" and fail to undergo cytokinesis. These cells can assemble and constrict the actomyosin ring normally but are incapable of forming a septum, suggesting that MEN components are critical for the initiation of septum formation. Interestingly, the spindle pole body to neck translocation of Dbf2 and Dbf20 is triggered by the inactivation of mitotic kinase. The requirement of kinase inactivation for translocation of MEN components to the division site thus provides a mechanism that renders mitotic exit a prerequisite for cytokinesis.  相似文献   

19.
We screened for mutations that resulted in lethality when the G1 cyclin Cln2p was overexpressed throughout the cell cycle in Saccharomyces cerevisiae. Mutations in five complementation groups were found to give this phenotype, and three of the mutated genes were identified as MEC1, NUP170, and CDC14. Mutations in CDC14 may have been recovered in the screen because Cdc14p may reduce the cyclin B (Clb)-associated Cdc28 kinase activity in late mitosis, and Cln2p may normally activate Clb-Cdc28 kinase activity by related mechanisms. In agreement with the idea that cdc14 mutations elevate Clb-Cdc28 kinase activity, deletion of the gene for the Clb-Cdc28 inhibitor Sic1 caused synthetic lethality with cdc14-1, as did the deletion of HCT1, which is required for proteolysis of Clb2p. Surprisingly, deletion of the gene for the major B-type cyclin, CLB2, also caused synthetic lethality with the cdc14-1 mutation. The clb2 cdc14 strains arrested with replicated but unseparated DNA and unseparated spindle pole bodies; this phenotype is distinct from the late mitotic arrest of the sic1::TRP1 cdc14-1 and the cdc14-1 hct1::LEU2 double mutants and of the cdc14 CLN2 overexpressor. We found genetic interactions between CDC14 and the replication initiator gene CDC6, extending previous observations of interactions between the late mitotic function of Cdc14p and control of DNA replication. We also describe genetic interactions between CDC28 and CDC14. Received: 24 May 1999 / Accepted: 19 October 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号