首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
真菌与植物共生是一种非常普遍、复杂和重要的生物学现象。真菌与植物共生部位、共生类型和共生结构的多样性,以及参入共生的真菌和植物多样性奠定真菌与植物共生的生物学基础。真菌与植物首先通过分子"对话"的生化机制相互识别构建共生体,进而由真菌和植物双方生理机制调控共生体发育及其生理功能,以构建稳定有效的共生体。真菌与植物的空间、营养和功能生态位很多是相近的,双方均面临相同的生态选择压力,需要共同抵抗不良生境,以适应更多环境。因此,真菌和植物通过两者共生的生态学机制增强植物抗逆性,减轻有害生物危害,提高其竞争力和生境的适应能力。真菌和植物长期的协同演化过程中,种群间的基因交流及其差异导致不同的基因组合,奠定了共生体多样化的基础与资源。此遗传学机制形成的多种遗传组合的共生体不仅使真菌和植物在各环境压力下共存,还可以不断进化发展。真菌和植物共生研究方面已形成较为完善的体系,加强真菌与植物共生理论的研究,特别是该类共生体遗传背景、基因与环境互作效应及其机制的阐明,将有助于诠释真菌与植物共生的生物学机制。  相似文献   

2.
丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展   总被引:8,自引:0,他引:8  
丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)-豆科植物-根瘤菌(Rhizobia)三者形成的共生体。是植物与微生物共生中的一种特殊类型。本文对这种共生体中微生物与植物之间的营养关系;AMF和根瘤菌双接种豆科植物的效应以及影响双接种效应的因素;AMF和根瘤菌在与豆科植物形成共生过程中的分子互作机制等进行了综述。同时对这种共生体还需进一步研究的问题及其在基础研究和实践应用方面的前景进行了讨论。  相似文献   

3.
在污水处理领域,藻菌共生有同步脱氮、除磷效率高、排放温室气体量低、生物质可资源化回收等优势,近年来受到学者的重视.目前鲜有综述污水处理中藻类与细菌、真菌及混合藻菌间互作机制的文章.本文从藻类-细菌、藻类-真菌、混合藻-混合菌3个方面介绍藻菌共生处理污水的研究进展,重点阐述藻菌间营养物质交换、信号传导及生物絮凝3种不同互...  相似文献   

4.
Arbuscular mycorrhizae formed between more than 80% of land plants and arbuscular mycorrhizal (AM) fungi represent the most widespread symbiosis on the earth. AM fungi facilitate the uptake of soil nutrients, especially phosphate, by plants, and in return obtain carbohydrates from hosts. Apocarotenoids, oxidative cleavage products of carotenoids, have been found to play a critical role in the establishment of AM symbiosis. Strigolactones previously isolated as seed-germination stimulants for root parasitic weeds act as a chemical signal for AM fungi during presymbiotic stages. Stimulation of carotenoid metabolism, leading to massive accumulation of mycorradicin and cyclohexenone derivatives, occurs during root colonization by AM fungi. This review highlights research into the chemical identification of arbuscular mycorrhiza-related apocarotenoids and their role in the regulation and establishment of AM symbiosis conducted in the past 10 years.  相似文献   

5.
Abstract

Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.  相似文献   

6.
Symbiosis between grasses and asexual fungal endophytes   总被引:10,自引:0,他引:10  
The symbiosis between vertically transmitted asexual endophytic fungi and grasses is common and generally considered to be mutualistic. Recent studies have accumulated evidence of negative effects of endophytes on plant fitness, prompting a debate on the true nature of the symbiosis. Genetic factors in each of the two partners show high variability and have a range of effects (from positive to negative) on plant fitness. In addition, interacting environmental factors might modify the nature of the symbiosis. Finally, competition and multitrophic interactions among grass consumers are influenced by endophytes, and the effects of plant neighbours or consumers could feedback to affect plant fitness. We propose a mutualism-parasitism continuum for the symbiosis between asexual endophytes and grasses, which is similar to the associations between plants and mycorrhizal fungi.  相似文献   

7.
Successful joint ventures of plants: arbuscular mycorrhiza and beyond   总被引:1,自引:0,他引:1  
Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis.  相似文献   

8.
Tropische Pilze     
Tropical fungi Mycological fieldwork in the tropics is a fascinating activity, because fungi are heterotrophic living beings and acquire nutrients in manyfold ways, often in association with algae, plants, or animals. Numerous fungi live in mutualistic symbiosis with plants or algae (lichens), as parasites of plants, or live on dead plant material. Other fungi kill insects or other animals and use their bodies as substrate to develop fruiting bodies, while a few fungal species live in mutualistic symbiosis with insects. These and further groups of fungi are presented based on examples from Panama. Sometimes, supposed fungal structures turn out to be cases of mimesis – plants or animals copy fungal patterns in order to take cover.  相似文献   

9.
Saprophytic, ectomycorrhizal (ECM) and pathogenic fungi play a key role in carbon and nutrient cycling in forest ecosystems. Whereas more than 50 genomes of saprotrophic and pathogenic fungi have been published, only two genomes of ECM fungi, Laccaria bicolor and Tuber melanosporum, have been released. Comparative analysis of the genomes of biotrophic species highlighted convergent evolution. Mutualistic and pathogenic biotrophic fungi share expansion of genome size through transposon proliferation and common strategies to avoid plant detection. Differences mainly rely on nutritional strategies. Such analyses also pinpointed how blurred the molecular boundaries are between saprotrophism, symbiosis and pathogenesis. Sequencing of additional ECM species, as well as soil saprotrophic fungi, will facilitate the identification of conserved traits for ECM symbiosis and those leading to the transition from white-rotting and brown-rotting to the ECM lifestyle.  相似文献   

10.
俞嘉瑞  袁海生 《菌物学报》2023,42(1):86-100
外生菌根真菌作为树木的共生伙伴,是森林生态系统重要组成部分,在森林天然更新、植物抗逆性形成、协助植物吸收限制性营养等方面扮演重要角色。真菌和植物跨界共生具有复杂的分子互作过程,在共生的不同阶段有不同的分子互作机制,其调控反馈网络还有许多未知。基因组与转录组研究技术和方法的进步,为一些新的信号分子、效应蛋白以及相关通路的发现提供了可能。真菌与宿主植物之间营养转移调控对共生的影响也逐渐受到关注,营养相关的转运蛋白对共生的建立和维持提供了物质基础。真菌的宿主选择机制是值得重点关注的领域,由于外生菌根真菌的多谱系起源和演化史中存在多次宿主转换事件,真菌演化出多样的应对机制用来区分相容性宿主、不相容性宿主和非宿主。通过对不同真菌与宿主植物的组学研究,宿主选择机制研究取得了一定进展。本文对近十年来国内外的研究报道进行梳理与总结,并对未来在该领域的探索方向做出展望。  相似文献   

11.
Meeting a non-host: the behaviour of AM fungi   总被引:9,自引:0,他引:9  
 Arbuscular mycorrhizal (AM) fungi are obligately biotrophic organisms that live symbiotically with the roots of most plants. The establishment of a functional symbiosis between AM fungi and host plants involves a sequence of recognition events leading to the morphological and physiological integration of the two symbionts. The developmental switches in the fungi are triggered by host signals which induce changes in gene expression and a process leading to unequivocal recognition between the two partners of the symbiosis. It has been calculated that about 80% of plant families from all phyla of land plants are hosts of AM fungi. The remaining plant species are either non-mycorrhizal or hosts of mycorrhizas other than the arbuscular type. Non-host plants have been used to obtain information on the factors regulating the development of a functional symbiosis. The aim of this present review is to highlight present-day knowledge of the fungal developmental switches involved in the process of host/non-host discrimination. The following stages of the life cycle of AM fungi are analysed in detail: spore germination, presymbiotic mycelial growth, differential branching pattern and chemotropism, appressorium formation, root colonization. Accepted: 17 June 1998  相似文献   

12.
丛枝菌根是由一类土壤中古老的丛枝菌根真菌与植物根系形成的互利互惠共生体。通过共生作用丛枝菌根真菌帮助宿主植物提高水和矿质营养(特别是磷)的吸收效率。作为回报,大约20%的光合作用产物被转移到丛枝菌根真菌中,供其完成自身的生活史。丛枝菌根形成的过程中,需要植物与丛枝菌根真菌之间进行一系列信号分子的识别、交换以及信号转导作用,这一过程由一系列植物和菌根真菌的基因控制。首先,植物会分泌一种植物激素——独角金内酯来诱导菌根真菌加速分支,而菌根真菌也会分泌脂质几丁寡糖促进植物与其形成菌根。加速分支的菌根真菌接触到植物根部以后,会附着在植物根的表皮并形成附着胞,通过附着胞穿透植物根的表皮,最后进入维管组织附近的皮层细胞并在其中不断进行二叉分支,形成特有的丛枝结构。通过对模式植物共生现象的研究,已经发现很多植物基因参与到共生形成的信号转导过程中,包括早期植物反应的基因、菌根与根瘤共生共同需要的转导因子以及菌根特异的信号分子等。本文对菌根的形成过程及信号转导途径进行详细的介绍,为人们深入研究菌根关系提供参考。  相似文献   

13.
菌根真菌促进植物吸收利用氮素机制的研究进展   总被引:2,自引:0,他引:2  
作为自然界最为普遍的一种植物共生体,菌根能够极大地促进植物对氮素的吸收和利用,其中菌根真菌在共生结构功能中发挥了重要作用。本文分别从菌根解剖构造、生理生化和分子生物学方面系统总结了菌根真菌促进植物吸收和利用氮素的研究现状。重点介绍了菌根真菌可利用的氮素形态及影响其利用的主要因素、菌根真菌的氮代谢途径GS-GOGAT以及菌根真菌中存在的鸟氨酸循环途径,指出精氨酸是菌丝内氮转运的主要形式,NH3可能为菌根真菌和植物界面质外体的主要转运形式。  相似文献   

14.
The diversity of pathways through which mycorrhizal fungi alter plant coexistence hinders the understanding of their effects on plant‐plant interactions. The outcome of plant facilitative interactions can be indirectly affected by mycorrhizal symbiosis, ultimately shaping biodiversity patterns. We tested whether mycorrhizal symbiosis enhances plant facilitative interactions and whether its effect is consistent across different methodological approaches and biological scenarios. We conducted a meta‐analysis of 215 cases (involving 21 nurse and 29 facilitated species), in which the performance of a facilitated plant species is measured in the presence or absence of mycorrhizal fungi. We show that mycorrhizal fungi significantly enhance plant facilitative interactions mainly through an increment in plant biomass (aboveground) and nutrient content, although their effects differ across biological contexts. In semiarid environments mycorrhizal symbiosis enhances plant facilitation, while its effect is non‐significant in temperate ecosystems. In addition, arbuscular but not ecto‐mycorrhizal (EMF) fungi significantly enhance plant facilitation, particularly increasing the P content of the plants more than EMF. Some knowledge gaps regarding the importance of this phenomenon have been detected in this meta‐analysis. The effect of mycorrhizal symbiosis on plant facilitation has rarely been assessed in other ecosystems different from semiarid and temperate forests, and rarely considering other fungal benefits provided to plants besides nutrients. Finally, we are still far from understanding the effects of the whole fungal community on plant‐plant interactions, and on plant species coexistence.  相似文献   

15.
丛枝菌根共生体(arbuscular mycorrhiza, AM)是丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与宿主植物之间形成的互惠共生形式.共生体中的碳、氮交换和代谢影响着宿主植物和共生真菌之间的营养平衡和资源重新分配,在物质和能量循环中发挥着重要作用.宿主植物光合固定的碳输送到真菌内,并且分解和释放真菌所需的生命物质和能量,包括促进孢子萌发、菌丝生长和提高氮等营养元素的吸收;而菌根真菌利用宿主植物提供的碳骨架和能量,发生氮的转化和运输,最终传递给宿主植物供其利用.本文综述了丛枝菌根共生体中碳、氮传输和代谢的主要模式,碳、氮的交互影响和调控机制,以促进丛枝菌根在可持续农业和生态系统中的应用.  相似文献   

16.
与植物共生难培养菌物的分类地位与生活史复杂多样,与植物共生程度各异。在其他一定种类生物(如植物、细菌等)存在的条件下,大多与植物共生难培养菌物能完成生活史,而且一些非专性非活体营养的共生菌物较专性活体营养的共生菌物更容易获得纯培养。在简要介绍与植物共生难培养菌物分类地位、生活史与共生类型的基础上,重点探讨了与植物共生难培养菌物的培养特性和培养方法,并讨论了该领域的研究动向与展望,旨在为当前和今后开展难培养菌物纯培养研究提供思路、依据和工作基础。  相似文献   

17.
植物根部能够与微生物形成相互依存、互惠互利的共生关系,非豆科植物根系主要与内生真菌形成菌根的共生体。共生受体样蛋白激酶(symbiosis receptor-like kinase,SYMRK)是植物识别菌根真菌诱导而产生的特异分子,它的蛋白结构由三个部分组成,即包含3个富含亮氨酸重复序列(LRRs)的胞外受体结合域、跨膜区和胞内蛋白激酶域。Symrk是控制共生形成的一个关键组分,该基因所编码的蛋白在植物识别和应答菌根真菌早期信号转导途径中是必需的。对Symrk基因的研究为进一步弄清植物-真菌共生的功能和作用机理打下了坚实的基础。  相似文献   

18.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

19.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

20.
丛枝菌根(arbuscular mycorrhizal, AM)共生是丛枝菌根真菌与大多数陆地植物的根系之间形成的一种互利共生关系。植物给菌根真菌提供碳水化合物; 作为回报, 菌根真菌能够增强植物对矿质营养元素(尤其是磷)的吸收。菌根的形成过程是一系列信号交换和转导的结果, 具有严格并且一致的顺序。本文以植物中菌根形成的信号途径为主线, 对菌根真菌的形成过程和信号转导途径及其方式进行了分析和讨论。高等植物中菌根形成的信号途径与豆科植物的结瘤信号途径部分共享, 并且与钙离子信号途径相关, 但前者更为广泛。尽管该途径中很多过程目前还不十分清楚, 但是相信在不久的将来就可以揭开菌根形成过程中的众多谜团。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号