首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified Na+,K(+)-ATPase from kidney outer medulla was phosphorylated by Pi in a reaction synergistically stimulated by Mg2+, when 40% (v/v) dimethyl sulfoxide was added to the assay medium. The phosphoenzyme formed at this solvent concentration was able to synthesize ATP even in the presence of Mg2+, because hydrolysis was impaired. ATP in equilibrium [32P]Pi exchange was also inhibited, indicating that partial reactions in the forward direction were blocked by the solvent. In 40% (v/v) dimethyl sulfoxide the enzyme's affinity for ADP decreased, in comparison with the values observed in purely aqueous medium. Addition of K+, which accelerated dephosphorylation of Na+,K(+)-ATPase in a totally water medium, partially reversed the inhibition of hydrolysis that was observed in the presence of dimethyl sulfoxide.  相似文献   

2.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

3.
The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of Ca2+ was studied. At pH 6.0, 10 degrees C and in the absence of K+, the enzyme displays a very low velocity of ATP hydrolysis. Addition of up to 15% dimethyl sulfoxide increased this velocity severalfold (from 5-18 nmol of Pi X mg of protein-1 X h-1) and then decreased at higher solvent concentrations. Dimethyl sulfoxide increased both enzyme phosphorylation from ATP and the affinity for this substrate. Maximal levels of 1.0-1.2 nmol of EP X mg of protein-1 and apparent KM for ATP of 5 X 10(-6) M were obtained at a concentration of 30% dimethyl sulfoxide. The same preparation under optimal conditions (pH 7.5, 10 microM CaCl2, 100 mM KCl and no dimethyl sulfoxide at 37 degrees C) displays a velocity of ATP hydrolysis between 8 and 12 X 10(5) nmol of Pi X mg of protein-1 X h-1 while the phosphoenzyme levels varied between 3.5 and 4.0 nmol of EP X mg of protein-1. Enzyme phosphorylation from ATP in the absence of Ca2+ always preceded Pi liberation into the assay media. Two different phosphoenzyme species were formed which were kinetically distinguished by their decomposition rates. The observed steady-state velocity of ATP hydrolysis could be accounted for either by the decay of the fast component or by the simultaneous decomposition of both phosphoenzyme species. The hydrolysis of the phosphoenzyme formed in the absence of Ca2+ was KCl-stimulated and ADP-independent. The rate constant of breakdown was equal to that observed for the phosphoenzyme formed in the presence of Ca2+. It is suggested that the rapidly decaying phosphoenzyme (and possibly both rapidly and slowly decaying species) are intermediates in the reaction cycle of Mg2+-dependent ATP hydrolysis of sarcoplasmic reticulum Ca2+-ATPase and may represent a bypass of Ca2+ activation by dimethyl sulfoxide.  相似文献   

4.
1. The use of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP), a synthetic, fluorescent analog of ATP, by whole rat liver mitochondria and by submitochondrial particles produced via sonication has been studied. 2. Direct [3H]adenine nucleotide uptake studies with isolated mitochondria, indicate the epsilon-[3H]ATP is not transported through the inner membrane by the adenine nucleotide carrier and is therefore not utilized by the 2,4-dinitrophenol-sensitive F1-ATPase (EC 3.6.1.3) that functions in oxidative phosphorylation. However, epsilon-ATP is hydrolyzed by a Mg2+-dependent, 2,4-dinitrophenol-insensitive ATPase that is characteristic of damaged mitochondria. 3. epsilon-ATP can be utilized quite well by the exposed F1-ATPase of sonic submitochondrial particles. This epsilon-ATP hydrolysis activity is inhibited by oligomycin and stimulated by 2,4-dinitrophenol. The particle F1-ATPase displays similar Km values for both ATP and epsilon-ATP; however, the V with ATP is approximately six times greater than with epsilon-ATP. 4. Since epsilon-ATP is a capable substrate for the submitochondrial particle F1-ATPase, it is proposed that the fluorescent properties of this ATP analog might be employed to study the submitochondrial particle F1-ATPase complex, and its response to various modifiers of oxidative phosphorylation.  相似文献   

5.
The rates of hydrolysis of acetyl phosphate in the presence of 0.1 M NaOH and of ATP in the presence of either 1 M HCl or 1 M NaOH were measured at different temperatures and in the presence of different concentrations of the organic solvents dimethyl sulfoxide or ethylene glycol. Under all conditions tested, there was a progressive increase in the rate constant of hydrolysis of both phosphate compounds as the water activity of the medium was decreased by the addition of organic solvents. At 25 degrees C, substitution of 70% of the water of the medium by dimethyl sulfoxide promoted an increase of two orders of magnitude in the rate constant of acetyl phosphate hydrolysis. In the presence of 80% and 90% dimethyl sulfoxide the rate of acetyl phosphate hydrolysis increased by more than two orders of magnitude and was so fast that it could not be measured with the method used. The effect of organic solvents on the rate of ATP hydrolysis was less pronounced than that observed for acetyl phosphate hydrolysis. At 30 degrees C, substitution of 90% of water by an organic solvent promoted a 4-6-fold increase of the rate of ATP hydrolysis. Acceleration of either acetyl phosphate or ATP hydrolysis rates was promoted by a decrease in both activation energies (Ea) and in entropies of activation delta S. The data obtained are discussed with reference to the mechanism of catalysis of enzymes involved in energy transduction such as the Ca2+-ATPase of sarcoplasmic reticulum and the F1-ATPase of mitochondria.  相似文献   

6.
Transient electrical currents generated by the Na(+)-transporting F(o)F(1)-ATPase of Ilyobacter tartaricus were observed in the hydrolytic and synthetic mode of the enzyme. Two techniques were applied: a photochemical ATP concentration jump on a planar lipid membrane and a rapid solution exchange on a solid supported membrane. We have identified an electrogenic reaction in the reaction cycle of the F(o)F(1)-ATPase that is related to the translocation of the cation through the membrane bound F(o) subcomplex of the ATPase. In addition, we have determined rate constants for the process: For ATP hydrolysis this reaction has a rate constant of 15-30 s(-1) if H(+) is transported and 30-60 s(-1) if Na(+) is transported. For ATP synthesis the rate constant is 50-70 s(-1).  相似文献   

7.
ATP hydrolysis, the exchange of inorganic phosphate with ATP, and ATP synthesis have been studied as a function of Mg2+ concentration in bovine heart submitochondrial particles. The rate of exchange is low at concentrations of Mg2+ below 3 mM, at higher concentrations, the exchange is several times higher. ATP hydrolysis shows a different pattern with respect to the concentration of Mg2+. The ratio of ATP hydrolyzed to ATP exchanged is above 20 at Mg2+ concentrations below 3 mM and about 5 at high Mg2+ concentrations; ADP induces a further drop of the ratio (2-3). By assays of the sensitivity of the hydrolytic reaction to organic solvents (dimethyl sulfoxide), it has been possible to determine the rate-limiting step of ATP hydrolysis. At 3 mM Mg2+, the rate-limiting step is the release of ADP in the soluble, but not in the particulate enzyme. However at higher Mg2+ concentrations, the rate-limiting step in the particulate enzyme is also ADP release. Therefore, the decrease in the ratio of ATP hydrolysis to inorganic phosphate incorporated into ATP coincides with a change in the kinetics of the enzyme, i.e. when the terminal step of ATP hydrolysis becomes rate-limiting, the inorganic phosphate-ATP exchange increases. Ca2+ induces an increase in the phosphate-ATP exchange at low Mg2+ concentrations.  相似文献   

8.
Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with [3H]ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. [3H]ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with [3H]ADP in 30 min with a Kd of 30 microM. [3H]ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of [3H]ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. [3H]ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits. It has also been demonstrated that enzyme-bound ATP is formed when the TF0.F1 complex containing bound ADP was incubated with Pi, Mg2+, and 50% dimethyl sulfoxide.  相似文献   

9.
The ATP hydrolysis rate and the ADP-ATP exchange rate of (Na+ + K+)-ATPase from ox brain were measured at 10 microM Mg2+free and at micromolar concentrations of free ATP and ADP. (1) In the absence of K+, substrate inhibition of the hydrolysis rate was observed. It disappeared at low Na+ and diminished at increasing concentrations of ADP. This was interpreted in terms of free ATP binding to E1P. In support of this interpretation, free ATP was found to competitively inhibit ADP-ATP exchange. (2) In the presence of K+, substrate activation of the hydrolysis rate was observed. Increasing (microM) concentrations of ADP did not give rise to competitive inhibition in contrast to the situation in the absence of K+ (cf. 1, above). This was interpreted to show that at micromolar substrate, some low-affinity, high-turnover Na+ + K+ activity is possible, provided the Mg2+ concentration is low. (3) While small concentrations of K+ increased the hydrolysis rate (cf. 2) they decreased the rate of ADP-ATP exchange. To elucidate this phenomenon, parallel measurements of exchange and hydrolysis rates were performed over a wide range of ATP and ADP concentrations, with and without K+. If, in the presence and absence of K+, ADP (and ATP competing) are binding to the same phosphorylated intermediate for the backward reaction, it places quantitative restrictions on the ratio of rate constants with and without K+. The results did not conform to these restrictions, and the discrepancy is taken as evidence for the necessity for a bicyclic scheme for the action of the (Na+ + K+)-ATPase. (4) An earlier statement concerning the nature of the phosphoenzyme obtained in the presence of Na+ and K+ is amended.  相似文献   

10.
The regulation of ATP hydrolysis and Pi-ATP exchange reactions by ATP, ADP, Mg2+, and phosphate was studied in liposomes containing F0-F1 obtained from bovine heart submitochondrial particles by solubilization with lauryl dimethylamino oxide as described previously (Dreyfus, G., Celis, H., and Ramirez, J. (1984) Anal. Biochem. 142, 215-220). A simultaneous analysis of ATP hydrolysis and the Pi-ATP exchange reactions showed that the ratio of hydrolysis/exchange is close to one when the ATP concentration is in the lower micromolar range. In this preparation ADP stimulates the Pi-ATP exchange reaction and depresses ATP hydrolysis. The exchange reaction is almost abolished when ADP is removed from the medium by an ATP-regenerating system. Mg2+ in millimolar concentrations stimulates Pi-ATP exchange, and at the same time decreases ATP hydrolysis; accordingly, the hydrolysis/exchange ratio depends on the concentration of Mg2+. Inorganic phosphate also controls this ratio, a lower ratio being observed at high phosphate concentrations. The Pi-ATP exchange reaction, but not ATP hydrolysis, depends on the concentration of medium phosphate. These results indicate that the kinetic characteristics of this F0-F1 preparation are modified by Mg2+, ATP, and phosphate.  相似文献   

11.
The effects of lauryl dimethylamine oxide on the Rhodospirillum rubrum H+-ATPase have been studied. This detergent activates Mg2+-dependent ATP hydrolysis in the isolated R. rubrum F0-F1 34-fold, whereas the Ca2+-ATPase activity is only slightly modified. ATPase activation by lauryl dimethylamine oxide enhances the effect on ATP hydrolysis exerted by free Mg2+ ions. Concentrations of free Mg2+ in the range of 0.025 mM favor activation while higher concentrations inhibit ATPase activity by approximately 70%. Steady-state kinetic analysis shows that lauryl dimethylamine oxide induces a complex kinetic behavior for Mg-ATP in the chromatophores, similar to the untreated F0-F1 complex. The initial rate value for Mg-ATP unisite catalysis was found to be 6.3 times higher (3.5 X 10(-3) mol Pi per mol R. rubrum F0-F1 per second) in the presence than in the absence of detergent, where the initial rate was 5.5 X 10(-4) mol Pi per mol R. rubrum F0-F1 per second. These experiments show that lauryl dimethylamine oxide shifts the cation requirement for ATP-hydrolysis of the isolated R. rubrum H+-ATPase from Ca2+ to Mg2+ and that it activates both multisite and unisite catalysis. Results are discussed in relation to the possibility of a regulatory role by Mg2+ ions on ATP hydrolysis expressed through subunit interactions.  相似文献   

12.
The initial rates of ATP hydrolysis catalyzed by Fo x F1 (bovine heart submitochondrial particles) preincubated in the presence of Pi for complete activation of the oligomycin-sensitive ATPase were measured as a function of ATP, Mg2+, and Mg x ATP concentrations. The results suggest the mechanism in which Mg x ATP complex is the true substrate of the ATPase and the second Mg2+ bound at a specific pH-dependent site is needed for the catalysis. Simple hyperbolic Michaelis--Menten dependences of the reaction rate on the substrate (Mg x ATP) and activating Mg2+ were found. In contrast to the generally accepted view, no inhibition of ATPase by free Mg2+ was found. Inhibition of the reaction by free ATP is due to a decrease of free Mg2+ needed for the catalysis. In the presence of both Ca2+ and Mg2+ the kinetics of ATP hydrolysis suggest that the Ca x ATP complex is neither hydrolyzed nor competes with Mg x ATP, and free Ca2+ does not affect the hydrolysis of Mg x ATP complex. A crucial role of free Mg2+ in the time-dependent inhibition of ATPase by azide is shown. The dependence of apparent Km for Mg x ATP on saturation of the Mg2+-specific site suggests the formal ping-pong mechanism in which bound Mg2+ participates in the overall reaction after dissociation of one product (most likely Pi) thus promoting either release of ADP (catalytic turnover) or slow isomerization of the enzyme--product complex (formation of the dead-end ADP(Mg2+)-inhibited enzyme). The rate of Mg x ATP hydrolysis only slightly depends on pH at saturating Mg2+. In the presence of limited amounts of free Mg2+ the pH dependence of the initial rate corresponds to the titration of a single group with pKa = 7.5. The simple competition between H+ and activating Mg2+ was observed. The specific role of Mg2+ as a coupling cation for energy transduction in Fo x F1-ATPase is discussed.  相似文献   

13.
(1) Mitochondrial ATPase (F1) is influenced by specific nucleotides in its kinetic behavior towards its substrates. In this work, initial hydrolysis rates, as well as continuous reaction progress, were measured by recording proton production (equivalent to triphosphate hydrolysis). (2) After preincubation with ATP, F1 hydrolyzes MgITP partly as if it were MgATP, with respect to temperature dependence and 2,4-dinitrophenol inhibition/stimulation. (3) Acetyl ATP is a competitive inhibitor versus ATP on the F1-ATPase. With F1 which has been freed of ambient ATP by repeated precipitations with ammonium sulfate the Ki of acetyl ATP is 400 nM. (4) F1-ATPase which was depleted of bound nucleotides in the presence of glycerol (Garret, N.E. and Penefsky, H.S. (1975) J. Biol. Chem. 250, 6640-6647) was preincubated with ADP and acetyl ATP. These preparations were assayed for hydrolytic activity with MgITP as substrate. Compared to a nonpreincubated control enzyme, the hydrolysis with these preparations was first stimulated, then inhibited. This stimulation/inhibition effect is most pronounced at 10 degrees C, but is also observed at 20 degrees C. (5) When nucleotide-depleted enzyme is preincubated with acetyl AMP, its ability to hydrolyze MgITP slowly decreases to approx. 50% after 60 min. This effect is reversed by further preincubation with acetyl ATP. It is speculated that under appropriate conditions AMP may exist or arise in a buried position on F1-ATPase, and act there as an inhibitor of MgITP hydrolysis.  相似文献   

14.
The effect of polyamines on F1-ATPase catalyzed reactions has been studied through the use of submitochondrial particles and F1-ATPase. ATP degradation catalyzed by submitochondrial particles and F1-ATPase was inhibited by spermine and spermidine. Spermine's inhibition was much greater than spermidine's effect. In contrast, P1-ATP exchange and succinate dependent ATP synthesis catalyzed by submitochondrial particles were both stimulated by spermine. The inhibition of ATPase activity by polyamines probably occurs through polyamine's replacement of Mg2+ on ATP, for the following reasons. (a) The ATPase activity inhibited by spermine was partially recovered when Mg2+ was added. (b) Spermine bound to ATP and phospholipids but not to F1-ATPase; yet spermine inhibited the ATPase reaction catalyzed by F1-ATPase, a protein free of phospholipid. (c) The binding of spermine to ATP was inhibited by Mg2+. The ATP content in polyamine-deficient cells definitely was lower than that in normal cells. On the basis of these results, the possible role of spermine in keeping the ATP concentration at a high level is discussed.  相似文献   

15.
The effect of a carboxylic ionophore (lasalocid) on the sarcoplasmic reticulum Ca2(+)-ATPase was investigated. The purified enzyme was preincubated with lasalocid in the presence of Ca2+ and the absence of K+ at pH 7.0 and 0 degrees C for 2 h. The Ca2(+)-dependent ATPase activity was strongly inhibited by this preincubation, whereas the activity of the contaminant Mg2(+)-ATPase was unaffected. The steady-state level of the phosphoenzyme (EP) intermediate remained constant over the wide range of lasalocid concentrations. The Ca2(+)-induced enzyme activation was unaffected. The kinetics of phosphorylation of the Ca2(+)-activated enzyme by ATP as well as the rate of conversion of ADP-sensitive EP to ADP-insensitive EP were also unaffected. Accumulation of ADP-insensitive EP was greatly enhanced, and almost all of the EP accumulating at steady state was ADP-insensitive. Hydrolysis of ADP-insensitive EP was strongly inhibited. A similar strong inhibition of the Ca2(+)-dependent ATPase activity by lasalocid was found with sarcoplasmic reticulum vesicles. To examine the effect of lasalocid on the conformational change in each reaction step, the Ca2(+)-ATPase of sarcoplasmic reticulum vesicles was labeled with a fluorescent probe (N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine) without a loss of catalytic activity and then preincubated with lasalocid as described above. The conformational changes involved in hydrolysis of ADP-insensitive EP and in the reversal of this hydrolysis were appreciably retarded by lasalocid. The conformational changes involved in other reaction steps were unaffected. These results demonstrate that hydrolysis of ADP-insensitive EP in the catalytic cycle of this enzyme is selectively inhibited by lasalocid.  相似文献   

16.
The transport processes for uridine, deoxycytidine, uracil, adenine and hypoxanthine require an energy source and are active under anaerobic or aerobic conditions. Inhibitory effects of cyanide, arsenate, carbonylcyanide m-chlorophenylhydrazone, 2,4-dinitrophenol and N,N'-dicyclohexylcarbodiimide on the transport of uridine and deoxycytidine differ from the corresponding effects on the transport of uracil, adenine and hypoxanthine. The nature of these inhibitory effects supports the conclusion that uridine and deoxycytidine transport is energized either by electron transport or by ATP hydrolysis via (Ca2+ + Mg2+)-ATPase. The transport or uracil, adenine and hypoxanthine is dependent upon ATP or some high energy phosphate derivative of ATP, but is independent of (Ca2+ + Mg+)-ATPase and electron transport. Uptake of the ribose moiety of uridine by a mutant of Escherichia coli B, which lacks the transport system for uracil and intact uridine, is neither stimulated by energy sources nor inhibited by various inhibitors of energy metabolism under either aerobic or anaerobic conditions.  相似文献   

17.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

18.
Inhibition of the human erythrocyte calcium pump by dimethyl sulfoxide   总被引:1,自引:0,他引:1  
P.J. Romero   《Cell calcium》1992,13(10):659-667
The action of dimethyl sulfoxide on the human red cell Ca2+ pump was studied in inside-out vesicles. In a high-K+ medium at pH 7.6, the organic solvent inhibited both Ca2+ transport and ATP hydrolysis. Half-maximal effect was obtained with about 2% (v/v). At or below 10% dimethyl sulfoxide, the inhibition was overcome by adding inorganic phosphate or oxalate. In the absence of organic solvent, Ca2+ efflux from Ca(2+)-loaded vesicles consisted of a slow and a fast component whilst in its presence, there appears additionally a leakage component. The size of the latter depended markedly on dimethyl sulfoxide concentration, being about 3% at that level where Ca2+ uptake was half-maximally inhibited. ATP hydrolysis was more sensitive to dimethyl sulfoxide (10%) when free Ca2+ was increased within the millimolar level than when it was raised within the micromolar range. On the other hand, raising Ca2+ with organic solvent greatly stimulated ATP synthesis through ATP-Pi exchange, without reaching saturation. The results suggest that dimethyl sulfoxide blocks the red cell Ca2+ pump by increasing the affinity of the Ca2+ translocating site at the releasing step. They also show that at high concentrations, this solvent increases Ca2+ permeability.  相似文献   

19.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

20.
Studies were made of the stimulation by 2,4-dinitrophenol (DNP) of an adenosine triphosphatase (ATPase) in stromata of human erythrocytes. Activation by 2,4-dinitrophenol occurs in the range 10?5 to 10?3 M and was seen in whole cells, ghosts reconstituted with Mg and ATP, and in osmotic ghosts prepared at a low ratio of cells to water. Phloretin and phloridzin also activated the DNP sensitive system but inhibited it at higher concentrations. DNP increased the Km and Vmax values of the enzyme equally. The DNP sensitive and Na+ + K+ sensitive enzymes of the stromata were compared. The activities of the two ATPases are additive, require the presence of Mg++ and require that the substrate be located at the inner surface of the membrane. The two enzymes differ in their substrate specificity, in their sensitivity to inhibition by ouabain and phloretin and in their sensitivity to some factor in hemolysates. The possible roles of this system in the erythrocyte were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号