共查询到20条相似文献,搜索用时 0 毫秒
1.
Marquès-Bueno MM Moreno-Romero J Abas L De Michele R Martínez MC 《The Plant journal : for cell and molecular biology》2011,67(1):169-180
Protein kinase CK2 is a pleiotropic Ser/Thr kinase, evolutionary conserved in eukaryotes. Studies performed in different organisms, from yeast to humans, have highlighted the importance of CK2 in cell growth and cell-cycle control. However, the signalling pathways in which CK2 is involved have not been fully identified. In plants, the phytohormone auxin is a major regulator of cell growth. Recent discoveries have demonstrated that differential distribution of within auxin plant tissues is essential for developmental processes, and that this distribution is dependent on polar auxin transport. We report here that a dominant-negative mutant of CK2 (CK2mut) in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. However, CK2mut plants exhibit normal responses to exogenous indole-3-acetic acid (IAA) indicating that they are not affected in the perception of the hormone but upstream in the pathway. We demonstrate that mutant plants are not deficient in IAA but are impaired in its transport. Using genetic and pharmacological tools we show that CK2 activity depletion hinders correct formation of auxin gradients and leads to widespread changes in the expression of auxin-related genes. In particular, members of the auxin efflux carrier family (PINs), and the protein kinase PINOID, both key regulators of auxin fluxes, were misexpressed. PIN4 and PIN7 were also found mislocalized, with accumulation in endosomal bodies. We propose that CK2 functions in the regulation of auxin-signalling pathways, particularly in auxin transport. 相似文献
2.
3.
Auxin-mediated gene expression is largely controlled through a family of DNA-binding proteins known as auxin response factors (ARF). Previous studies on the role of proteolytic regulation in auxin signaling have focused on degradation of their interacting partner, the Aux/IAA proteins. Aux/IAA family members with domain II sequences are rapidly degraded, show auxin-enhanced degradation rates, and interact with the related F-box proteins TIR1 and AFB1-3, which indicates that they are ubiquitylated by a CUL1-dependent E3 ligase. To date, limited data have been generated regarding degradation of ARFs. Here, we focus on the degradation rate of one ARF family member, Arabidopsis thaliana ARF1, and find that the half-lives of N-terminally HA-tagged ARF1 and C-terminally luciferase-tagged ARF1 are both approximately 3–4 h. This half-life appears to be conferred by a component of the middle region (MR), and degradation of the luciferase fusion with the MR is more rapid when the fusion includes an additional nuclear localization signal. ARF1 degradation is proteasome-dependent and rates are not altered in a CUL1 mutant background, suggesting that this ARF is targeted for proteasomal degradation via an alternative set of machinery to that used for Aux/IAA degradation. Consistent with this, exogenous indole acetic acid does not affect the degradation of ARF1. Given increasing evidence that the relative ratio of Aux/IAAs to ARFs rather than the absolute quantity within the cell appears to be the mode through which auxin signaling is modulated, this half-life is likely to be biologically relevant. 相似文献
4.
5.
在植物体内,细胞周期对于植物的萌发、生长、开花、结实等各个生长发育阶段具有重要作用。细胞周期正常运转需要依赖一些细胞周期蛋白,但是目前关于细胞周期蛋白调控根发育的分子机制还不清楚。通过筛选模式植物拟南芥的根发育异常突变体,分离鉴定了1个突变体dig9(drought inhibition of lateral root growth),该突变体表现为主根短、侧根少、发育迟缓、顶端分生组织变小、叶片扭曲、无主茎等表型。通过图位克隆,成功定位并克隆了DIG9基因,该基因编码一个细胞周期蛋白,是有丝分裂后期促进复合体的一个亚基APC8 (anaphase-promoting complex)。通过亚细胞定位发现DIG9定位于细胞核;qRT-PCR检测发现DIG9基因在根中有较高的表达量,进一步通过启动子-GUS报告系统发现DIG9在根尖、侧根和顶端分生组织等细胞分裂旺盛区域表达。外施IAA能恢复dig9突变体的侧根表型但不能恢复根短表型。dig9突变体对干旱及盐胁迫反应不敏感。研究结果表明DIG9基因可能通过影响IAA的产生来调控植物的侧根发育。 相似文献
6.
泛素化途径与细胞周期的关系 总被引:4,自引:0,他引:4
泛素化途径(the ubiquitin pathway)是一种有高度选择性的蛋白水解途径,是细胞周期调控的基础。本文主要论述了依赖SCF(skp-cullin-F-boxprotein)和APC/C(anaphase-promoting complexor cyclosome)的两种泛素化途径对细胞周期不同时期的调控作用及其研究进展。 相似文献
7.
DiDonato RJ Arbuckle E Buker S Sheets J Tobar J Totong R Grisafi P Fink GR Celenza JL 《The Plant journal : for cell and molecular biology》2004,37(3):340-353
Lateral root formation, the primary way plants increase their root mass, displays developmental plasticity in response to environmental changes. The aberrant lateral root formation (alf)4-1 mutation blocks the initiation of lateral roots, thus greatly altering root system architecture. We have positionally cloned the ALF4 gene and have further characterized its phenotype. The encoded ALF4 protein is conserved among plants and has no similarities to proteins from other kingdoms. The gene is present in a single copy in Arabidopsis. Using translational reporters for ALF4 gene expression, we have determined that the ALF4 protein is nuclear localized and that the gene is expressed in most plant tissues; however, ALF4 expression and ALF4's subcellular location are not regulated by auxin. These findings taken together with further genetic and phenotypic characterization of the alf4-1 mutant suggest that ALF4 functions independent from auxin signaling and instead functions in maintaining the pericycle in the mitotically competent state needed for lateral root formation. Our results provide genetic evidence that the pericycle shares properties with meristems and that this tissue plays a central role in creating the developmental plasticity needed for root system development. 相似文献
8.
The role of regulated protein degradation in auxin response 总被引:11,自引:0,他引:11
9.
泛素连接酶作为一种翻译后效应器,对细胞生命活动的正常运行至关重要。而泛素连接酶SCF(Skp1-Cullin-F-box protein)复合体重要组件—F-box蛋白的主要作用是对靶蛋白的特异性识别。作为许多生理病理过程的效应分子,它广泛存在于真核生物,参与了众多的细胞机制,其对底物的特异性识别是蛋白元件在特定时空功能终止的重要基础。对F-box蛋白的深入研究必将增强人们对细胞生命活动调控机制和疾病机理的理解。本文拟就F-box蛋白的结构、功能及其与疾病发生的研究进展做一综述。 相似文献
10.
Heming Zhao Tengfei Ma Xin Wang Yingtian Deng Haoli Ma Rongsheng Zhang Jie Zhao 《Plant, cell & environment》2015,38(11):2208-2222
11.
《植物学报(英文版)》2025,67(3)
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions. 相似文献
12.
Randy Suryadinata Jessica K. Holien George Yang Michael W. Parker Elena Papaleo Boris ?ar?evi? 《Cell cycle (Georgetown, Tex.)》2013,12(11):1732-1744
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34. 相似文献
13.
Lateral root (LR) formation is initiated when pericycle cells accumulate auxin, thereby acquiring founder cell (FC) status and triggering asymmetric cell divisions, giving rise to a new primordium. How this auxin maximum in pericycle cells builds up and remains focused is not understood. We report that the endodermis plays an active role in the regulation of auxin accumulation and is instructive for FCs to progress during the LR initiation (LRI) phase. We describe the functional importance of a PIN3 (PIN‐formed) auxin efflux carrier‐dependent hormone reflux pathway between overlaying endodermal and pericycle FCs. Disrupting this reflux pathway causes dramatic defects in the progress of FCs towards the next initiation phase. Our data identify an unexpected regulatory function for the endodermis in LRI as part of the fine‐tuning mechanism that appears to act as a check point in LR organogenesis after FCs are specified. 相似文献
14.
Ivanchenko MG Napsucialy-Mendivil S Dubrovsky JG 《The Plant journal : for cell and molecular biology》2010,64(5):740-752
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands. 相似文献
15.
The spacing of lateral root primordia in the primary root of Pisum sativum (cv. Alaska) seedlings is influenced by both predetermined lateral root initiation sites in the embryonic radicle and by factors present during seedling growth. When pea seeds were germinated in the presence of the mitotic inhibitor, colchicine, the triarch radicle produced three ranks of primordiomorphs indicating sites of embryonic lateral root primordia. The number of primordiomorphs was not the same along the three xylem strands in the radicle. Normally germinated seedling roots (5 days old) also showed a different number of lateral root primordia associated with the three strands. In both cases, the strand with the greatest number of primordia (or primordiomorphs) was associated with a cotyledonary trace. This indicated a possible role for the cotyledons in setting the pattern of lateral root distribution during radicle development. The spacing of lateral root primordia could be altered by the application of growth regulators. Seedling root tips (2 mm) were removed (? rt) and replaced with indoleacetic acid (+IAA), and in some instances seedlings were also treated with the auxin transport inhibitor, 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5, 1-α]isoindol-8-one (+DPX). In the growth regulator treatments, primary root elongation was inhibited, a greater number of lateral root primordia were initiated compared to controls, and the spacing intervals between primordia were greatly reduced. The — rt, +IAA, +DPX-treatment resulted in the closest possible spacing intervals (av. 0.4 ? 0.6 mm), but resulted in fused or fasciated laterals. The — rt, + IAA-treatment produced the shortest spacing intervals which resulted in “normal” lateral roots (0.8 ? 1.1 mm). 相似文献
16.
Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repres- sive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis. 相似文献
17.
Nodzon LA Xu WH Wang Y Pi LY Chakrabarty PK Song WY 《The Plant journal : for cell and molecular biology》2004,40(6):996-1006
Ubiquitin-mediated protein modification plays a key role in many cellular signal transduction pathways. The Arabidopsis gene XBAT32 encodes a protein containing an ankyrin repeat domain at the N-terminal half and a RING finger motif. The XBAT32 protein is capable of ubiquitinating itself. Mutation in XBAT32 causes a number of phenotypes including severe defects in lateral root production and in the expression of the cell division marker CYCB1;1::GUS . The XBAT32 gene is expressed abundantly in the vascular system of the primary root, but not in newly formed lateral root primordia. Treatment with auxin increases the expression of XBAT32 in the primary root and partially rescues the lateral root defect in xbat32 - 1 mutant plants. Thus, XBAT32 is a novel ubiquitin ligase required for lateral root initiation. 相似文献
18.
The stability of a protein is regulated by a balance between its ubiquitylation and deubiquitylation. S-phase kinase-associated protein 2 (SKP2) is an oncogenic F-box protein that recognizes tumor suppressor substrates for targeted ubiquitylation by the E3 ligase SKP1-Cullin1-F-box and degradation by proteasome. SKP2 is itself ubiquitylated by the E3 ligases APC/CCDH1 and SCFFBXW2, and deubiquitylated by deubiquitylases (DUBs) USP10 and USP13. Given the biological significance of SKP2, it is likely that the other E3s or DUBs may also regulate its stability. Here, we report the identification and characterization of USP2 as a new DUB. We first screened a panel of DUBs and found that both USP2 and USP21 bound to endogenous SKP2, but only USP2 deubiquitylated and stabilized SKP2 protein. USP2 inactivation via siRNA knockdown or small-molecule inhibitor treatment remarkably shortened SKP2 protein half-life by enhancing its ubiquitylation and subsequent degradation. Unexpectedly, USP2-stabilized SKP2 did not destabilize its substrates p21 and p27. Mechanistically, USP2 bound to SKP2 via the leucine-rich repeat substrate-binding domain on SKP2 to disrupt the SKP2-substrate binding, leading to stabilization of both SKP2 and these substrates. Biologically, growth suppression induced by USP2 knockdown or USP2 inhibitor is partially mediated via modulation of SKP2 and its substrates. Our study revealed a new mechanism of the cross-talk among the E3–DUB substrates and its potential implication in targeting the USP2–SKP2 axis for cancer therapy. 相似文献
19.
Bhalerao RP Eklöf J Ljung K Marchant A Bennett M Sandberg G 《The Plant journal : for cell and molecular biology》2002,29(3):325-332
Lateral root formation is profoundly affected by auxins. Here we present data which indicate that light influences the formation of indole-3-acetic acid (IAA) in germinating Arabidopsis seedlings. IAA transported from the developing leaves to the root system is detectable as a short-lived pulse in the roots and is required for the emergence of the lateral root primordia (LRP) during early seedling development. LRP emergence is inhibited by the removal of apical tissues prior to detection of the IAA pulse in the root, but this treatment has minimal effects on LRP initiation. Our results identify the first developing true leaves as the most likely source for the IAA required for the first emergence of the LRP, as removal of cotyledons has only a minor effect on LRP emergence in contrast to removal of the leaves. A basipetal IAA concentration gradient with high levels of IAA in the root tip appears to control LRP initiation, in contrast to their emergence. A significant increase in the ability of the root system to synthesize IAA is observed 10 days after germination, and this in turn is reflected in the reduced dependence of the lateral root emergence on aerial tissue-derived auxin at this stage. We propose a model for lateral root formation during early seedling development that can be divided into two phases: (i) an LRP initiation phase dependent on a root tip-localized IAA source, and (ii) an LRP emergence phase dependent on leaf-derived IAA up to 10 days after germination. 相似文献
20.
Maria G. Ivanchenko Gloria K. Muday Joseph G. Dubrovsky 《The Plant journal : for cell and molecular biology》2008,55(2):335-347
Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7 , reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin. 相似文献