首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The stability of a protein is regulated by a balance between its ubiquitylation and deubiquitylation. S-phase kinase-associated protein 2 (SKP2) is an oncogenic F-box protein that recognizes tumor suppressor substrates for targeted ubiquitylation by the E3 ligase SKP1-Cullin1-F-box and degradation by proteasome. SKP2 is itself ubiquitylated by the E3 ligases APC/CCDH1 and SCFFBXW2, and deubiquitylated by deubiquitylases (DUBs) USP10 and USP13. Given the biological significance of SKP2, it is likely that the other E3s or DUBs may also regulate its stability. Here, we report the identification and characterization of USP2 as a new DUB. We first screened a panel of DUBs and found that both USP2 and USP21 bound to endogenous SKP2, but only USP2 deubiquitylated and stabilized SKP2 protein. USP2 inactivation via siRNA knockdown or small-molecule inhibitor treatment remarkably shortened SKP2 protein half-life by enhancing its ubiquitylation and subsequent degradation. Unexpectedly, USP2-stabilized SKP2 did not destabilize its substrates p21 and p27. Mechanistically, USP2 bound to SKP2 via the leucine-rich repeat substrate-binding domain on SKP2 to disrupt the SKP2-substrate binding, leading to stabilization of both SKP2 and these substrates. Biologically, growth suppression induced by USP2 knockdown or USP2 inhibitor is partially mediated via modulation of SKP2 and its substrates. Our study revealed a new mechanism of the cross-talk among the E3–DUB substrates and its potential implication in targeting the USP2–SKP2 axis for cancer therapy.  相似文献   

3.
泛素化途径与细胞周期的关系   总被引:4,自引:0,他引:4  
周蕊  余泽华 《生命科学》2003,15(3):147-150
泛素化途径(the ubiquitin pathway)是一种有高度选择性的蛋白水解途径,是细胞周期调控的基础。本文主要论述了依赖SCF(skp-cullin-F-boxprotein)和APC/C(anaphase-promoting complexor cyclosome)的两种泛素化途径对细胞周期不同时期的调控作用及其研究进展。  相似文献   

4.
The S-locus F-box (SLF/SFB) protein, recently identified as the pollen determinant of S-RNase-based self-incompatibility (SI) in Solanaceae, Scrophulariaceae and Rosaceae, has been proposed to serve as the subunit of an SCF (SKP1-CUL1-F-box) ubiquitin ligase and to target its pistil counterpart S-RNase during the SI response. However, the underlying mechanism is still in dispute, and the putative SLF-binding SKP1-equivalent protein remains unknown. Here, we report the identification of AhSSK1, Antirrhinum hispanicumSLF-interacting SKP1-like1, using a yeast two-hybrid screen against a pollen cDNA library. GST pull-down assays confirmed the SSK1-SLF interaction, and showed that AhSSK1 could connect AhSLF to a CUL1-like protein. AhSSK1, despite having a similar secondary structure to other SKP1-like proteins, appeared quite distinctive in sequence and unique in a phylogenetic analysis, in which no SSK1 ortholog could be predicted in the sequenced genomes of Arabidopsis and rice. Thus, our results suggest that the pollen-specific SSK1 could be recruited exclusively as the adaptor of putative SCF(SLF) in those plants with S-RNase-based SI, providing an important clue to dissecting the function of the pollen determinant.  相似文献   

5.
Protein kinase CK2 is a pleiotropic Ser/Thr kinase, evolutionary conserved in eukaryotes. Studies performed in different organisms, from yeast to humans, have highlighted the importance of CK2 in cell growth and cell-cycle control. However, the signalling pathways in which CK2 is involved have not been fully identified. In plants, the phytohormone auxin is a major regulator of cell growth. Recent discoveries have demonstrated that differential distribution of within auxin plant tissues is essential for developmental processes, and that this distribution is dependent on polar auxin transport. We report here that a dominant-negative mutant of CK2 (CK2mut) in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. However, CK2mut plants exhibit normal responses to exogenous indole-3-acetic acid (IAA) indicating that they are not affected in the perception of the hormone but upstream in the pathway. We demonstrate that mutant plants are not deficient in IAA but are impaired in its transport. Using genetic and pharmacological tools we show that CK2 activity depletion hinders correct formation of auxin gradients and leads to widespread changes in the expression of auxin-related genes. In particular, members of the auxin efflux carrier family (PINs), and the protein kinase PINOID, both key regulators of auxin fluxes, were misexpressed. PIN4 and PIN7 were also found mislocalized, with accumulation in endosomal bodies. We propose that CK2 functions in the regulation of auxin-signalling pathways, particularly in auxin transport.  相似文献   

6.
Cell adhesion to the extracellular matrix (ECM) is a requirement for proliferation that is typically lost in malignant cells. In the absence of adhesion, nontransformed cells arrest in G1 with increased levels of the cyclin-dependent kinase inhibitor p27. We have reported previously that the degradation of p27 requires its phosphorylation on Thr-187 and is mediated by Skp2, an F-box protein that associates with Skp1, Cul1, and Roc1/Rbx1 to form the SCF(Skp2) ubiquitin ligase complex. Here, we show that the accumulation of Skp2 protein is dependent on both cell adhesion and growth factors but that the induction of Skp2 mRNA is exclusively dependent on cell adhesion to the ECM. Conversely, the expression of the other three subunits of the SCF(Skp2) complex is independent of cell anchorage. Phosphorylation of p27 on Thr-187 is also not affected significantly by the loss of cell adhesion, demonstrating that increased p27 stability is not dependent on p27 dephosphorylation. Significantly, ectopic expression of Skp2 in nonadherent G1 cells resulted in p27 downregulation, entry into S phase, and cell division. The ability to induce adhesion-independent cell cycle progression was potentiated by coexpressing Skp2 with cyclin D1 but not with cyclin E, indicating that Skp2 and cyclin D1 cooperate to rescue proliferation in suspension cells. Our study shows that Skp2 is a key target of ECM signaling that controls cell proliferation.  相似文献   

7.
《Reproductive biology》2022,22(1):100578
Though endometriosis is benign, however, it shares certain characteristics with cancers, such as the ability to invade and metastasize. Previous studies have demonstrated that S-phase kinase associated protein2 (SKP2) promotes invasion, tumorigenesis, and metastasis. However, its correlation with adenomyosis is unclear. Herein, we aimed to look into SKP2 expression patterns and regulatory effects on endometrial stromal cell (ESC) proliferation and invasion, and its internal mechanism in adenomyosis. Western blot, qRT-PCR, and immunochemistry were carried out for detecting SKP2 and ZEB1 expression in ESC of adenomyosis and adenomyosis endometrial tissue. The primary ESCs were identified using immunofluorescence. SKP2 knockdown was accomplished in vitro by transfecting a particular lentivirus vector. The colony formation and CCK-8 assays were carried out for assessing cell proliferation, while cell invasion potential was assessed using the transwell assay. Both SKP2 and ZEB1 were found to be significantly upregulated in adenomyosis endometrial tissue. Knockdown of SKP2 inhibited adenomyotic ESC invasion and proliferation. Further experiments showed that knocking out SKP2 reduced ZEB1 expression in adenomyotic ESCs. Our results showed that SKP2 could regulate ZEB1 expression, and increased SKP2 may play a role in the pathogenesis of adenomyosis and stimulating ESC proliferation and invasion.  相似文献   

8.
9.
10.
The yeast SKP1 gene and its human homolog p19 skp1 encode a kinetochore protein required for cell cycle progression at both the DNA synthesis and mitosis phases of the cell cycle. In orchids we identified a cDNA (O108) that is expressed in early stages of ovule development and is homologous to the yeast SKP1. Based on the orchid O108 cDNA clone, we identified and characterized an Arabidopsis thaliana (L.) Heynh. cDNA designated ATskp1 that also has high sequence similarity to yeast SKP1. The Arabidopsis ATskp1 is a single-copy gene that mapped to chromosome 1. The expression of the ATskp1 gene was highly correlated with meristem activity in that its mRNA accumulated in all of the plant meristems including the vegetative shoot meristem, inflorescence and floral meristems, root meristem, and in the leaf and floral organ primordia. In addition, ATskp1 was also highly expressed in the dividing cells of the developing embryo, and in other cells that become multinucleate or undergo endoreplication events such as the endosperm free nuclei, the tapetum and the endothelium. Based on its spatial pattern of expression, ATskp1 is a marker for cells undergoing division and may be required for meristem activity. Received: 6 June 1997 / Accepted: 2 July 1997  相似文献   

11.
SCF‐type E3‐ubiquitin ligases control numerous cellular processes through the ubiquitin‐proteasome pathway. However, the regulation of SCF function remains largely uncharacterized. Here, we report a novel SCF complex‐interacting protein, Lag2, in Saccharomyces cerevisiae. Lag2 interacts with the SCF complex under physiological conditions. Lag2 negatively controls the ubiquitylation activities of SCF E3 ligase by interrupting the association of Cdc34 to SCF complex. Overexpression of Lag2 increases unrubylated Cdc53, whereas deletion of lag2, together with the deletions of dcn1 and jab1, results in the accumulation of Rub1‐modified Cdc53. In vitro rubylation assays show that Lag2 inhibits the conjugation of Rub1 to Cdc53 in competition with Dcn1, which suggest that Lag2 down‐regulates the rubylation of Cdc53 rather than promoting derubylation. Furthermore, Dcn1 hinders the association of Lag2 to Cdc53 in vivo. Finally, the deletion of lag2 combined with the deletion of either dcn1 or rub1 suppresses the growth of yeast cells. These observations thus indicate that Lag2 has a significant function in regulating the SCF complex by controlling its ubiquitin ligase activities and its rubylation cycle.  相似文献   

12.
《Molecular cell》2023,83(12):2020-2034.e6
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

13.
The phytohormone gibberellin (GA) controls growth and development in plants. Previously, we identified a rice F-box protein, gibberellin-insensitive dwarf2 (GID2), which is essential for GA-mediated DELLA protein degradation. In this study, we analyzed the biological and molecular biological properties of GID2. Expression of GID2 preferentially occurred in rice organs actively synthesizing GA. Domain analysis of GID2 revealed that the C-terminal regions were essential for the GID2 function, but not the N-terminal region. Yeast two-hybrid assay and immunoprecipitation experiments demonstrated that GID2 is a component of the SCF complex through an interaction with a rice ASK1 homolog, OsSkp15. Furthermore, an in vitro pull-down assay revealed that GID2 specifically interacted with the phosphorylated Slender Rice 1 (SLR1). Taken these results together, we conclude that the phosphorylated SLR1 is caught by the SCFGID2 complex through an interacting affinity between GID2 and phosphorylated SLR1, triggering the ubiquitin-mediated degradation of SLR1.  相似文献   

14.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

15.
16.
SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号