首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   

2.
The tos1 (tomato osmotically sensitive) mutant, isolated from an in vitro screen of root growth during osmotic stress, was less sensitive to exogenous ABA, but accumulated more ABA under osmotic stress than WT plants. We assessed growth and water relations characteristics of hydroponically grown tos1 seedlings (in the absence of osmotic stress) at low and high evaporative demands. Growth of tos1 was severely inhibited at both high and low evaporative demands. Twenty DAS, WT and tos1 genotypes had a similar leaf water and turgor potential, but mature tos1 plants (45 day old) showed a significant diurnal loss of leaf turgor, with recovery overnight. Increased evaporative demand increased turgor loss of tos1 plants. High evaporative demand at the beginning of the day decreased stomatal conductance of tos1, without diurnal recovery, thus whole plant transpiration was decreased. De-topped tos1 seedlings showed decreased root hydraulic conductance and had a 1.4-fold increase in root ABA concentration. Impaired root function of tos1 plants failed to meet transpirational water demand and resulted in shoot turgor loss, stomatal closure and growth inhibition.  相似文献   

3.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   

4.
Turner NC 《Plant physiology》1975,55(5):932-936
Concurrent measurements of evaporation, leaf conductance, irradiance, leaf water potential, and osmotic potential of maize (Zea mays L. cv. Pa602A) in soil at either high or low soil water potential were compared at several hours on two consecutive days in July. Hourly evaporation, measured on two weighing lysimeters, was similar until 1000 hours Eastern Standard Time, but thereafter evaporation from the maize in the dry soil was always less than that in the wet soil; before noon it was 62% and by midafternoon, only 35% of that in the wet soil. The leaf water potential, measured with a pressure chamber, was between −1.2 and −2.5 bars and between −6.8 and −8 bars at sunrise (about 0530 hours Eastern Standard Time) in the plants in the wet and dry soil, respectively, but decreased quickly to between −8 and −13 bars in the plants in the wet soil and to less than −15 bars in the plants in the dry soil by 1100 to 1230 hours Eastern Standard Time. At this time, the leaf conductance of all leaves was less than 0.1 cm sec−1 in the maize in the dry soil, whereas the conductance was 0.3 to 0.4 cm sec−1 in the leaves near the top of the canopy in the wet soil. The osmotic potential, measured with a vapor pressure osmometer, also decreased during the morning but to a smaller degree than leaf water potential, so that by 1100 to 1230 hours Eastern Standard Time the leaf turgor potential was 1 to 2 bars in all plants. Thereafter, leaf turgor potential increased, particularly in the plants in soil at a high water potential, whereas leaf water potential continued to decrease even in the maize leaves with partly closed stomata. Evidently maize can have values of leaf conductance differing 3- to 4- fold at the same leaf turgor potential, which suggests that stomata do not respond primarily to bulk leaf turgor potential. Evidence for some osmotic adjustment in the plants at low soil water potential is presented. Although the degree of stomatal closure in the maize in dry soil did not prevent further development of stress, it did decrease evaporation in proportion to the decrease in canopy conductance.  相似文献   

5.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

6.
Leaf water relations, stomatal conductance (g) and shoot growthrate (SGR) were monitored during a soil drying cycle in threesugarcane cultivars growing in pots in a greenhouse. The pressure-volumetechnique was used to evaluate diurnal and droughtinduced variationin leaf water relations characteristics. Leaf solute contentand bulk elasticity varied diurnally in both irrigated and droughtedplants and were highest at midday. Solute accumulation and increasedelasticity were also observed as leaf water deficits developedmore slowly during soil drying. This osmotic and elastic adjustmentmaintained symplast volume essentially constant both diurnallyand during soil drying, whereas turgor was only partially maintained.The extent of osmotic adjustment associated with drought wasnot reflected in the leaf osmotic potential at full turgor becausethe concurrent increase in tissue elasticity resulted in a largersymplast volume at full turgor. Cultivar responses over therange of leaf water deficits imposed did not provide conclusiveevidence for genotypic variation in osmotic and elastic adjustment.It appeared that behavioural differences in rates of water usemay have determined the magnitude of osmotic and elastic adjustmentin response to drought. In the early stages of soil drying,reductions in SGR and g were not accompanied by significantreductions in bulk leaf water status. This suggested that otherfactors, presumably signals originating from the roots, mayhave regulated SGR and g.  相似文献   

7.
Current year shoots of Sitka spruce [Picea sitchensis Bong. (Carr.)] from the forest canopy were equilibrated in a leaf chamber. The shoots were excised in air, and removed at differing times in order to establish a relationship between stomatal conductance and xylem water potential. The experiment was repeated at five ambient CO2 concentrations. A second set of excised forest shoots, and shoots excised from 2-year- old nursery seedlings were allowed to evaporate freely in a controlled environment wind tunnel until a constant rate of transpiration was measured, to establish a relationship between cuticular conductance and xylem water potential. Cuticular conductance was estimated to be 0.012 cm s-1 at high water potential and declined linearly to 0.007 cm s-1 at ?3.5 MPa. The implication of this decline in the subsequent calculation of stomatal and mesophyll conductance is considered. Stomatal conductance remained constant at water potentials above ?1.4 MPa and was not affected by ambient carbon dioxide concentrations between 20 and 600 cm-3. At lower water potentials, stomatal conductance declined and approached zero at ?2.5 to ?2.6 MPa. The results suggest that stomatal aperture is not controlled by either ambient or intercellular space carbon dioxide concentration, and that stomatal closure at low water potential is unlikely to be mediated by carbon dioxide.  相似文献   

8.
Given that stomatal movement is ultimately a mechanical process and that stomata are morphologically and mechanically diverse, we explored the influence of stomatal mechanical diversity on leaf gas exchange and considered some of the constraints. Mechanical measurements were conducted on the guard cells of four different species exhibiting different stomatal morphologies, including three variants on the classical "kidney" form and one "dumb-bell" type; this information, together with gas-exchange measurements, was used to model and compare their respective operational characteristics. Based on evidence from scanning electron microscope images of cryo-sectioned leaves that were sampled under full sun and high humidity and from pressure probe measurements of the stomatal aperture versus guard cell turgor relationship at maximum and zero epidermal turgor, it was concluded that maximum stomatal apertures (and maximum leaf diffusive conductance) could not be obtained in at least one of the species (the grass Triticum aestivum) without a substantial reduction in subsidiary cell osmotic (and hence turgor) pressure during stomatal opening to overcome the large mechanical advantage of subsidiary cells. A mechanism for this is proposed, with a corollary being greatly accelerated stomatal opening and closure. Gas-exchange measurements on T. aestivum revealed the capability of very rapid stomatal movements, which may be explained by the unique morphology and mechanics of its dumb-bell-shaped stomata coupled with "see-sawing" of osmotic and turgor pressure between guard and subsidiary cells during stomatal opening or closure. Such properties might underlie the success of grasses.  相似文献   

9.
Does turgor limit growth in tall trees?   总被引:16,自引:2,他引:14  
The gravitational component of water potential contributes a standing 0.01 MPa m?1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure–volume technique was used to characterize height‐dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas‐fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential (Ψl), bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25‐year‐old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old‐growth (approximately 450‐year‐old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of Ψl and pressure–volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of Ψl was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of Ψl. In tall trees, the gravitational component of Ψl is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.  相似文献   

10.
Summary The water relations of Pentaclethra macroloba (Willd.) Kuntze, a dominant, shade-tolerant, tree species in the Atlantic lowlands of Costa Rica, were examined within the forest canopy. Pressure-volume curves and diurnal courses of stomatal conductance and leaf water potential were measured in order to assess differences in water relations between understory, mid-canopy and canopy leaves. Leaves in the canopy had the smallest pinnules but the largest stomatal frequencies and stomatal conductances of the three forest levels. Osmotic potentials at full turgidity decreased with height in the forest; in the canopy and midcanopy they were reduced relative to those in the understory just enough to balance the gravitational component of water potential. Consequently, maximum turgor pressures were similar for leaves from all three canopy levels. Bulk tissue elastic modulus increased with height in the canopy. Leaf water potentials were lowest in the canopy and highest in the understory, even when the gravitational component was added to mid-canopy and canopy values. As a result, minimum turgor pressures were also lowest in the canopy compared to those at lesser heights, and approached zero in full sunlight on clear days.Osmotic potentials at each canopy level were similar for both wet and dry season samples dates suggesting that seasonal osmotic adjustment does not occur. Despite lowered predawn water potentials during the dry season, turgor was maintained in the understory by reduced stomatal conductances.  相似文献   

11.
The Role of the Epidermal Cells in the Stomatal Movements   总被引:5,自引:0,他引:5  
The water deficit of the leaves, the osmotic values of the stomatal cells and epidermal cells at incipiment plasmolysis, as well as the width of the stomatal apparatus and pore opening, were measured every hour from 6-17 o'clock under natural environmental conditions. During the noon hours, the intensity of light in clear weather ranged from 40,000-55,000 lux in the open position, and from 15,000-20,000 lux in the shade. The temperature was usually 15–20°C. The experimental object was Vicia Faba growing in a field, both plants freely rooted and plants in pots buried in the soil. The experiments resulted in the following observations and conclusions: 1. When leaves are exposed to strong light, the osmotic value at incipient plasmolysis changes not only in the guard cells, but also in the epidermal cells. If the epidermal cells' osmotic value rises, water is sucked from the guard cells and their uptake of water by suction is decreased, which promotes closure and counteracts opening, respectively. If the value falls, the effect is the reverse. The guard cells react passively to these epidermal changes. The passive stomatal movement eliciteed in this way has therefore been denoted as “osmopassive”, in contrast to the long known passive movement caused by a change in turgor of the epidermal cells, and which has therefore been denoted as “turgorpasslve”. The osmopassive component of stomatal closure has an earlier and more rapid onset than the hydroactive closing reaction, which consists of a decrease in the guard cells' osmotic value. Stomatat closure often starts with the osmopassive rapid process, and is completed and stabilized by the hydroactive process. It has not been possible to determine whether the osmopassive closing reaction is identical with the rapid reaction previously described, and interpreted as of adenoid nature, and tlius belonging to the active group. 2. The osmotic potential of the guard cells - i.e., the difference between the osmotic value of guard cells and epidermal cells at incipient plasmolysis - is, therefore, formed not only by a cbange in the osmotic value of the former cells, but also by a cbange in that of the latter. 3. Although the pore width runs largely parallel to the osmotic value of the guard cells, there is greater agreement between pore width and osmotic potential. When the water deficit of the leaf exceeds a certain threshold value, potential and stomatal width start to decrease. Closure is completed when the fall in potential approaches the zero value. If the water deficit subsequently continues to increase, the potential becomes negative and the stomata remain closed. 4. The stomatal movements are regulated by physiological processes which form two kinds of equilibrium between increase and decrease of the osmotic potential of the guard cells, i.e. the osmopassive increase - osmopassive decrease and the photoactive increase - hydroactive decrease. These equilibria complement each other in rate and stability. The osmopassive processes start rapidly and as soon as the deficit cbanges; hydroactive closure and sometimes also photoactive opening, are, on the contrary, time-consuming. When the water deficit is suboptimal, turgorpassive opening and closing are superadded, but only in those cases in which the osmotic potential of the guard cetls is positive.  相似文献   

12.
Abscisic acid (ABA) transported in the xylem from root to shoot and perceived at the guard cell is now widely studied as an essential regulating factor in stomatal closure under drought stress. This provides the plant with a stomatal response mechanism in which water potential is perceived in the root as an indication of soil water status and available water resources. There is also ample evidence that stomata respond directly to some component of leaf water status. This provides additional information about water potential gradients developing between root and shoot as the result of water transport, allowing for a more stable regulation of shoot water status and better protection of the transport system itself. The precise location at which leaf water status is sensed, however, and the molecular events transducing this signal into a guard cell response are not yet known. Major questions therefore remain unanswered on how water stress signals perceived at root and leaf locations are integrated at the guard cell to control stomatal behaviour.  相似文献   

13.
Root restriction may be of importance for productivity in both forestry and agriculture. To study the physiological effects of root restriction in European alder ( Alnus glutinosa Gaertn.), seedlings were grown in aerated liquid culture under one of four root volumes to induce the following levels of root restriction: 1.5, 6,16 and 500 ml. Root restriction for 96 days reduced shoot elongation, plant dry weight, leaf area and chlorophyll levels and increased leaf area/root dry weight ratio and correlative bud inhibition in seedlings. The initial reduction in root/shoot ratios of severely restricted seedlings was followed by a reduction in leaf water potential, the development of internal water deficits in the upper shoots, a reduction in stomatal opening and transpiration rates and, eventually, stomatal closure. Severe prolonged root restriction (1.5 ml root volume) resulted in a decline in seedling vigour and ultimately, senescence as determined by increased electrical impedance ratios, followed by visible leaf senescence and later, by whole plant senescence. Of the severely restricted seedlings, 40% were dead after 96 days of restriction. The results suggest that imbalanced root/shoot ratios caused the development of internal water stress and the consequent reduction in stomatal aperture, culminating in leaf and whole plant senescence.  相似文献   

14.
Phaseolus vulgaris plants with expanding primary leaves weresubjected to dark-light or light-dark transition at a root temperatureof 25 °C, or to root cooling to 10 °C. Illuminationor darkening caused rapid changes in water flux through theplants and in epidermal turgor pressure when analysed by pressureprobe. However, these were not concurrent with variations inbulk leaf water potential and turgor pressure as determinedby the pressure chamber method. In addition, the turgor pressureof epidermis measured with the pressure probe was invariably0.05 to 0.15 MPa lower than that measured in bulk tissue withthe pressure chamber. Cooling roots to 10°C induced waterstress and wilting. Both techniques indicated a decrease ofturgor pressure, but a 20-30 min lag was observed with the pressurechamber. Due to stomatal closure and decreased transpiration,root-cooled plants regained cell turgor after 5-7 h of cooling,but bulk tissue and epidermal turgor (as well as leaf growthrate) remained significantly lower than control levels. Thesefindings indicate that changes in turgor pressure as the resultof hydraulic signalling are sufficient to explain the rapidchanges in growth rate following illumination or cooling reportedin earlier work (Sattin et al 1990). They also indicate thatdata obtained by use of the pressure chamber must be treatedwith caution. Key words: Phaseolus vulgaris, expansion growth, water relations, hydraulic signalling, pressure probe, pressure chamber  相似文献   

15.
Apple trees are very drought tolerant, having the capability to grow and carry on photosynthesis even at low water potentials. Much of the tolerance is due to the ability of apple leaves to maintain turgor potentials at levels conducive to growth and stomatal opening. Diurnally, leaf turgor is maintained through decreases in osmotic potentials (due to active solute accumulation), osmotic adjustment, or to concentration of solutes via tissue water loss. These two processes combined may decrease osmotic potentials by as much as 1.65 MPn during the day. Seasonally, osmotic potentials remain fairly constant, but leaf elasticity increases, allowing growth to continue and stomata to remain open us water and turgor potentials become progressively lower. Release of stored water from plant tissues to the transpiration stream is another means of preventing water potentials from reaching critical values for stomatal closure. A combination of a number of these physiological adaptations may account for much of the drought tolerance in apple trees.  相似文献   

16.
The dynamics of stomatal resistance and osmotic adjustment in response to plant water deficits and stage of physiological development was studied in the leaves of spring wheat ( Triticum aestivum L., GWO 1809). Plants were germinated and grown in pots in a growth chamber at the Duke University Phytotron to four physiological stages of development (4th leaf, 7th leaf, anthesis, and soft dough), during which time stomatal resistance, total water potential and osmotic potential were measured on the last fully developed leaf of water stressed and non-stressed plants. Pressure potential was obtained by difference. Stomatal closure of the abaxial and adaxial surfaces were independent of each other, each having a different critical total water potential. The total water potential required to close the stomata on the last fully developed leaf were different at different stages of physiological development, decreasing as the plants grew older. The development of osmoregulation in wheat allows the closure of stomata during the vegetative stage at a high total water potential, but insures that stomata remain open from anthesis through the ear filling period to a lower total water potential.  相似文献   

17.
Summary Diurnal courses of stomatal conductance, leaf water potential, and the components of tissue water potential were measured in six canopy species in an elfin cloud forest. High values of stomatal conductance were measured on cloudy days and during early morning and late afternoon of sunny days. Decreases in stomatal conductance with increases in vapour pressure deficit may have been a response to avoid further water deficits and suggested a stomatal response to changes in relative humidity. Daily transpiration varied between 470 and 1014 g m-2 day-1 during cloudy days and between 532 and 944 g m-2 day-1 during clear days. Stomatal conductance may have also responded to changes in leaf water potential, which was minimum at noon. The minimum tissue water potential measured in the field was -1.8 MPa in Myrcianthes fragrans, and the minimum turgor pressure was 0.49 MPa also in M. fragrans. There was a correlation between the osmotic potential and the minimum tissue water potential, suggesting that osmotic potential plays a major role in the maintenance of turgor in these species, in spite of the great variability in the elastic properties of leaf tissues. Turgor pressure decreased during the day following the course of water potential but never approached the turgor loss point, as it has been measured in some lowland rain forest trees. This is a strong indication that elfin cloud forest trees do not suffer severe water deficits, and that small tree stature is not directly related to water shortage.  相似文献   

18.
Leaf age and salinity influence water relations of pepper leaves   总被引:2,自引:0,他引:2  
Plant growth is reduced under saline conditions even when turgor in mature leaves is maintained by osmotic adjustment. The objective of this study was to determine if young leaves from salt-affected plants were also osmotically adjusted. Pepper plants (Capsicum annuum L. cv. California Wonder) were grown in several levels of solution osmotic potential and various components of the plants' water relations were measured to determine if young, rapidly growing leaves could accumulate solutes rapidly enough to maintain turgor for normal cell enlargement. Psychrometric measurements indicated that osmotic adjustment is similar for both young and mature leaves although osmotic potential is slightly lower for young leaves. Total water potential is also lower for young leaves, particularly at dawn for the saline treatments. The result is reduced turgor under saline conditions at dawn for young but not mature leaves. This reduced turgor at dawn, and presumably low night value, is possibly a cause of reduced growth under saline conditions. No differences in leaf turgor occur at midday. Porometer measurements indicated that young leaves at a given salinity level have a higher stomatal conductance than mature leaves, regardless of the time of day. The result of stomatal closure is a linear reduction of transpiration.  相似文献   

19.
On a site on the west slope of the Wank in the northern Alps changes in water potential, osmotic potential and transpiration rate were measured in spruce trees during the dry summer months of 1991. The pattern of decrease in water potential and osmotic potential on days of varying evaporative demand from trees of widely different decline conditions was used to describe the relative ability of the trees to withstand drought stress. Stress diagrams served as a tool for interpreting the state of health of each tree. The criterion is independent of the water situation of the tree and the other external conditions of the respective experiment. These diagrams clearly show that the foliage of spruces with high needle losses reaches the limit of endurance relatively early. For equal evaporative demand much lower turgor levels were observed in spruces with high needle loss compared to undamaged trees. Associated with the occurrence of low turgor values was the shedding of green needles. The abscission zone was shown in sections. The accumulation of highly fluorescent substances in the bundle sheath cells of the same material was described. Incomplete to non-existent stomatal control over water loss was attributed to modifications in the cell walls of the stomata which appear to alter the ability of the guard cells to sense changes in either atmospheric or cellular hydration. Our studies point to the following situation: air pollution directly affects stomatal control, the loss of stomatal control changes the drought avoidance abilities of the foliage and, as a consequence, low turgor levels occur and premature needle abscission is induced. As site water balance decreases, either due to a dry year or to poor moisture holding abilities of the soil, these conditions become apparent.  相似文献   

20.
Seasonal and diurnal variation and rehydration effects of pressure-volume parameters in Pseudotsuga menziesii (Mirb.) Franco from a plantation in central Pennsylvania, USA, were evaluated during May-September, 1989. Predawn elastic modulus was lowest in overwintering and newly expanded shoots in May and June, respectively, whereas predawn osmotic potentials at full and zero turgor were lowest in May and in early September, following an August drought. Seasonal variation in predawn relative water content at zero turgor was highly correlated with increases and decreases in elastic modulus and osmotic potential. Diurnal osmotic adjustment resulted in nearly constant turgor pressure, despite decreases in bulk shoot water potential. Elastic modulus decreased diurnally on 1 August and increased on 3 September. Decreases in osmotic potential and/or elastic modulus on 24 June and 1 August lowered the relative water content at zero turgor. Plateaus in pressure-volume data caused by excess apoplastic water, were present in 67% of naturally rehydrated shoots and in all of the shoots artificially rehydrated for 3, 6, 12 and 24 h, and they increased in volume with rehydration time. Plateaus represented 80–95% of the excess apoplastic water lost during pressure-volume analysis. Correcting for plateaus via linear regression had no significant effect on osmotic potential at full turgor; however, uncorrected elastic modulus and relative water content at zero turgor were often significantly lower than the plateau-corrected values, particularly in artificially rehydrated shoots. Plateau-corrected osmotic potential at full turgor and osmotic potential at zero turgor were significantly higher in most artificially rehydrated shoots than in those naturally rehydrated as the result of loss of symplastic solutes. Corrected elastic modulus decreased following 12 and 24 h of rehydration and corrected relative water content at zero turgor increased in as little as 3 h of rehydration. These results indicate that seasonal and diurnal patterns of tissue-water parameters in Pseudotsuga menziesii vary with plant phenology and drought conditions, and that the length of rehydration period is an important consideration for pressure-volume studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号