首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In response to DNA‐damage, cells have to decide between different cell fate programmes. Activation of the tumour suppressor HIPK2 specifies the DNA damage response (DDR) and tips the cell fate balance towards an apoptotic response. HIPK2 is activated by the checkpoint kinase ATM, and triggers apoptosis through regulatory phosphorylation of a set of cellular key molecules including the tumour suppressor p53 and the anti‐apoptotic corepressor CtBP. Recent work has identified HIPK2 as a regulator of the ultimate step in cytokinesis: the abscission of the mother and daughter cells. Since proper cytokinesis is essential for genome stability and maintenance of correct ploidy, this finding sheds new light on the tumour suppressor function of HIPK2. Here we highlight the molecular mechanisms coordinating HIPK2 function and discuss its emerging role as a tumour suppressor.  相似文献   

2.
The p53 tumor suppressor that plays a central role in the cellular response to genotoxic stress was suggested to be associated with the DNA repair machinery which mostly involves nucleotide excision repair (NER). In the present study we show for the first time that p53 is also directly involved in base excision repair (BER). These experiments were performed with p53 temperature-sensitive (ts) mutants that were previously studied in in vivo experimental models. We report here that p53 ts mutants can also acquire wild-type activity under in vitro conditions. Using ts mutants of murine and human origin, it was observed that cell extracts overexpressing p53 exhibited an augmented BER activity measured in an in vitro assay. Depletion of p53 from the nuclear extracts abolished this enhanced activity. Together, this suggests that p53 is involved in more than one DNA repair pathway.  相似文献   

3.
4.
5.
Repair of DNA double-strand break(DSB) is critical for the maintenance of genome integrity. A class of DSB-induced small RNAs(di RNAs) has been shown to play an important role in DSB repair. In humans,di RNAs are associated with Ago2 and guide the recruitment of Rad51 to DSB sites to facilitate repair by homologous recombination(HR). Ago2 activity has been reported to be regulated by phosphorylation under normal and hypoxic conditions. However, the role of Ago2 phosphorylation in DNA damage repair is unexplored. Here, we show that S672, S828, T830, and S831 of human Ago2 are phosphorylated in response to ionizing radiation(IR). S672 A mutation of Ago2 leads to significant reduction in Rad51 foci formation and HR efficiency. We further show that defective association of Ago2 S672 A variant with DSB sites, instead of defects in di RNA and Rad51 binding, may account for decreased Rad51 foci formation and HR efficiency.Our study reveals a novel regulatory mechanism for the function of Ago2 in DNA repair.  相似文献   

6.
Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer comparative studies investigating the contribution of all DNA repair genes in cancer progression employing an integrated approach have remained limited. We performed a multi-cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes in 16 cancer types (n = 16,225). Cox proportional hazards analyses revealed a significant variation in the number of prognostic genes between cancers; 81 genes were prognostic in clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We reasoned that genes that were commonly prognostic in highly correlated cancers revealed by Spearman’s correlation analysis could be harnessed as a molecular signature for risk assessment. A 10-gene signature, uniting prognostic genes that were common in highly correlated cancers, was significantly associated with overall survival in patients with clear cell renal cell (P < 0.0001), papillary renal cell (P = 0.0007), liver (P = 0.002), lung (P = 0.028), pancreas (P = 0.00013) or endometrial (P = 0.00063) cancers. Receiver operating characteristic analyses revealed that a combined model of the 10-gene signature and tumor staging outperformed either classifier when considered alone. Multivariate Cox regression models incorporating additional clinicopathological features showed that the signature was an independent predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent across all six cancers, patients with high 10-gene and high hypoxia scores had significantly higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional enrichment analyses revealed that high mortality rates in patients with high 10-gene scores were attributable to an overproliferation phenotype. Death risk in these patients was further exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene signature identified tumors with heightened DNA repair ability. This information has the potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with chemotherapeutic drugs.  相似文献   

7.
The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRNA, dramatically decreased the serum-stimulated RNR activity. Moreover, p53R2 siRNA, but not R2 siRNA, significantly inhibits serum-stimulated RNR activity, indicating that p53R2 is specifically regulated by a MEK2-dependent pathway. Co-immunoprecipitation analyses revealed that the MEK2 segment comprising amino acids 65–171 is critical for p53R2–MEK2 interaction, and the binding domain of MEK2 is required for MEK2-mediated increased RNR activity. Phosphorylation of MEK1/2 was greatly augmented by ionizing radiation, and RNR activity was concurrently increased. Ionizing radiation-induced RNR activity was markedly attenuated by transfection of MEK2 or p53R2 siRNA, but not R2 siRNA. These data show that MEK2 is an endogenous regulator of p53R2 and suggest that MEK2 may associate with p53R2 and upregulate its activity.  相似文献   

8.
The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRNA, dramatically decreased the serum-stimulated RNR activity. Moreover, p53R2 siRNA, but not R2 siRNA, significantly inhibits serum-stimulated RNR activity, indicating that p53R2 is specifically regulated by a MEK2-dependent pathway. Co-immunoprecipitation analyses revealed that the MEK2 segment comprising amino acids 65–171 is critical for p53R2–MEK2 interaction, and the binding domain of MEK2 is required for MEK2-mediated increased RNR activity. Phosphorylation of MEK1/2 was greatly augmented by ionizing radiation, and RNR activity was concurrently increased. Ionizing radiation-induced RNR activity was markedly attenuated by transfection of MEK2 or p53R2 siRNA, but not R2 siRNA. These data show that MEK2 is an endogenous regulator of p53R2 and suggest that MEK2 may associate with p53R2 and upregulate its activity.  相似文献   

9.
10.
DNA损伤修复是维持细胞基因组稳定性和完整性的基础,越来越多的研究发现,E3泛素连接酶在DNA损伤修复中起着重要的作用.该文将介绍DNA损伤修复的机制、DNA损伤修复与疾病的关系、及E3泛素连接酶接头蛋白MDM2和SPOP在DNA损伤修复中的作用.重点围绕DNA损伤修复的两条通路:E3泛素连接酶接头蛋白SPOP与ATM...  相似文献   

11.
NRH:quinone oxidoreductase 2 (QR2) is a long forgotten oxidoreductive enzyme that metabolizes quinones and binds melatonin. We used the potency of the RNA interference (RNAi)-mediated gene silencing to build a cellular model in which the role of QR2 could be studied. Because standard approaches were poorly successful, we successively used: (1) two chemically synthesized fluorescent small interfering RNA (siRNA) duplexes designed and tested for their gene silencing capacity leading to a maximal 40% QR2 gene silencing 48h post-transfection; (2) double transfection and cell-sorting of high fluorescent siRNA-transfected HT22 cells further enhancing QR2 RNAi silencing to 88%; (3) stable QR2 knock-down HT22 cell lines established with H1and U6 promoter driven QR2 short hairpin RNA (shRNA) encoding vectors, resulting in a 71-80% reduction of QR2 enzymatic activity in both QR2 shRNA HT22 cells. Finally, as a first step in the study of this cellular model, we observed a 42-48% reduction of menadione/BNAH-mediated toxicity in QR2 shRNA cells compared to the wild-type HT22 cells. Although becoming widespread and in some cases effective, siRNA-mediated cellular knock-down proves in the present work to be of marginal efficiency. Much development is required for this technique to be of general application.  相似文献   

12.
《Cell》2022,185(23):4394-4408.e10
  1. Download : Download high-res image (231KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
15.
16.
17.
18.
DNA glycosylases/AP lyases initiate repair of oxidized bases in the genomes of all organisms by excising these lesions and then cleaving the DNA strand at the resulting abasic (AP) sites and generate 3' phospho alpha,beta-unsaturated aldehyde (3' PUA) or 3' phosphate (3' P) terminus. In Escherichia coli, the AP-endonucleases (APEs) hydrolyze both 3' blocking groups (3' PUA and 3' P) to generate the 3'-OH termini needed for repair synthesis. In mammalian cells, the previously characterized DNA glycosylases, NTH1 and OGG1, produce 3' PUA, which is removed by the only AP-endonuclease, APE1. However, APE1 is barely active in removing 3' phosphate generated by the recently discovered mammalian DNA glycosylases NEIL1 and NEIL2. We showed earlier that the 3' phosphate generated by NEIL1 is efficiently removed by polynucleotide kinase (PNK) and not APE1. Here we show that the NEIL2-initiated repair of 5-hydroxyuracil (5-OHU) similarly requires PNK. We have also observed stable interaction between NEIL2 and other BER proteins DNA polymerase beta (Pol beta), DNA ligase IIIalpha (Lig IIIalpha) and XRCC1. In spite of their limited sequence homology, NEIL1 and NEIL2 interact with the same domains of Pol beta and Lig IIIalpha. Surprisingly, while the catalytically dispensable C-terminal region of NEIL1 is the common interacting domain, the essential N-terminal segment of NEIL2 is involved in analogous interaction. The BER proteins including NEIL2, PNK, Pol beta, Lig IIIalpha and XRCC1 (but not APE1) could be isolated as a complex from human cells, competent for repair of 5-OHU in plasmid DNA.  相似文献   

19.
In mammalian cells, DNA double-strand breaks (DSB) can be repaired by 2 main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). To give access to DNA damage to the repair machinery the chromatin structure needs to be relaxed, and chromatin modifications play major roles in the control of these processes. Among the chromatin modifications, changes in nucleosome composition can influence DNA damage response as observed with the H2A.Z histone variant in yeast. In mammals, p400, an ATPase of the SWI/SNF family able to incorporate H2A.Z in chromatin, was found to be important for histone ubiquitination and BRCA1 recruitment around DSB or for HR in cooperation with Rad51. Recent data with 293T cells showed that mammalian H2A.Z is recruited to DSBs and is important to control DNA resection, therefore participating both in HR and NHEJ. Here we show that depletion of H2A.Z in the osteosarcoma U2OS cell line and in immortalized human fibroblasts does not change parameters of DNA DSB repair while affecting clonogenic ability and cell cycle distribution. In addition, no recruitment of H2A.Z around DSB can be detected in U2OS cells either after local laser irradiation or by chromatin immunoprecipitation. These data suggest that the role of H2A.Z in DSB repair is not ubiquitous in mammals. In addition, given that important cellular parameters, such as cell viability and cell cycle distribution, are more sensitive to H2A.Z depletion than DNA repair, our results underline the difficulty to investigate the role of versatile factors such as H2A.Z.  相似文献   

20.
Ageing is a sophisticated process, accompanied by reduction in general physiological capacity and increase in mortality and death, stemming from damage accumulation over time. Various signaling pathways are known to be involved in the functional decrease in various organs in ageing humans. One of the most prominent pathways is DNA damage response (DDR), which is responsible for maintenance of the genomic integrity and stability. Insufficient or dysfunctional DDR signaling and the subsequent accumulation of potential DNA lesions are associated with the initiation/progression of various human pathologies including ageing. As a tumor suppressor gene, with critical functions in the ageing process, p53 is considered as a DDR centerpiece. In this review, we aim to discuss the interactions between p53 and DDR signaling and their contributions in ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号