首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates.  相似文献   

2.
The spectra of the absorbance changes due to the turnover of the so-called S-states of the oxygen-evolving apparatus were determined. The changes were induced by a series of saturating flashes in dark-adapted Photosystem II preparations, isolated from spinach chloroplasts. The electron acceptor was 2,5-dichloro-p-benzoquinone. The fraction of System II centers involved in each S-state transition on each flash was calculated from the oscillation pattern of the 1 ms absorbance transient which accompanies oxygen release. The difference spectrum associated with each S-state transition was then calculated from the observed flash-induced difference spectra. The spectra were found to contain a contribution by electron transfer at the acceptor side, which oscillated during the flash series approximately with a periodicity of two and was apparently modulated to some extent by the redox state of the donor side. At the donor side, the S0 → S1, S1 → S2 and S2 → S3 transitions were all three accompanied by the same absorbance difference spectrum, attributed previously to an oxidation of Mn(III) to Mn(IV) (Dekker, J.P., Van Gorkom, H.J., Brok, M. and Ouwehand, L. (1984) Biochim. Biophys. Acta 764, 301–309). It is concluded that each of these S-state transitions involves the oxidation of an Mn(III) to Mn(IV). The spectrum and amplitude of the millisecond transient were in agreement with its assignment to the reduction of the oxidized secondary donor Z+ and the three Mn(IV) ions.  相似文献   

3.
Oxalate oxidase catalyzes the oxidation of oxalate to carbon dioxide and hydrogen peroxide, making it useful for clinical analysis of oxalate in biological fluids. An artificial gene for barley oxalate oxidase has been used to produce functional recombinant enzyme in a Pichia pastoris heterologous expression system, yielding 250 mg of purified oxalate oxidase from 5 L of fermentation medium. The recombinant oxalate oxidase was expressed as a soluble, hexameric 140 kDa glycoprotein containing 0.2 g-atom Mn/monomer with a specific activity of 10 U/mg, similar to the properties reported for enzyme isolated from barley. No superoxide dismutase activity was detected in the recombinant oxalate oxidase. EPR spectra indicate that the majority of the manganese in the protein is present as Mn(II), and are consistent with the six-coordinate metal center reported in the recent X-ray crystal structure for barley oxalate oxidase. The EPR spectra change when bulky anions such as iodide bind, indicating conversion to a five-coordinate complex. Addition of oxalate perturbs the EPR spectrum of the Mn(II) sites, providing the first characterization of the substrate complex. The optical absorption spectrum of the concentrated protein contains features associated with a minor six-coordinate Mn(III) species, which disappears on addition of oxalate. EPR spin-trapping experiments indicate that carboxylate free radicals (CO2*-) are transiently produced by the enzyme in the presence of oxalate, most likely during reduction of the Mn(III) sites. These features are incorporated into a turnover mechanism for oxalate oxidase.  相似文献   

4.
To model the structural and functional parts of the water oxidizing complex in Photosystem II, a dimeric manganese(II,II) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru(II)(bpy)(3)) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru(II)(bpy)(3) in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru(III)(bpy)(3) from the Mn(2)(II,II) dimer, which then attained the Mn(2)(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn(2)(III,IV) state. Our data indicate that oxidation from the Mn(2)(II,II) state proceeds stepwise via intermediate formation of Mn(2)(II,III) and Mn(2)(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn(2)(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn(2)(III,IV), this suggests that water is essential for the formation of the Mn(2)(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem II, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.  相似文献   

5.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   

6.
Redox transitions in a film of detergent-purified bovine cytochrome bc(1) complex were investigated by perfusion-induced attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The technique provides a flexible method for generating redox-induced IR changes of components of bovine cytochrome bc(1) complex at a high signal:noise ratio. These IR redox difference spectra arise from perturbations of prosthetic groups and surrounding protein. Visible difference spectra were recorded synchronously using a light beam reflected from the exposed prism surface and provided a quantitative means of determining the redox transitions that were occurring. IR and visible redox difference spectra of iron-sulfur protein/cytochrome c(1), heme b(H), and heme b(L) were separated by selective reduction and/or oxidation that extends published data on the homologous bacterial enzyme. Several bands could be tentatively assigned to redox-sensitive modes of hemes and ubiquinone and changes in the surrounding protein by comparison with available data for bacterial bc(1) complex, other related heme proteins, and model compounds. Some tentative assignments of further signals to specific amino acids are made on the basis of known crystal structures.  相似文献   

7.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   

8.
Dissimilatory Fe(III) and Mn(IV) reduction.   总被引:57,自引:1,他引:56       下载免费PDF全文
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.  相似文献   

9.
X-ray crystallographic analysis of Na5[Mn(l-tart)2] · 12H2O demonstrated that Mn(III) ion has two tridentate l-tartrates of which two deprotonated hydroxo groups and one carboxylate are coordinated in contrast to the previously proposed structure with two didentate tartrates and two coordinated water. The tetragonally distorted octahedron due to the Jahn-Teller effect was discussed in relation with the large splitting components for the UV-Vis and circular dichroism (CD) spectra in the d-d transition in the solid. The significant difference in the UV-Vis and CD spectra between the solid and the solution suggests that the tridentate coordination of the tartrate in the solid complex changes to the didentate one in the solution.  相似文献   

10.
A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified by DEAE-Sepharose ion-exchange chromatography, Blue Agarose chromatography, and gel filtration on Sephadex G-100. Sodium dodecyl sulfate-gel electrophoresis indicated that the homogeneous protein has an Mr of 46,000. The absorption spectrum of the enzyme indicates the presence of a heme prosthetic group. The pyridine hemochrome absorption spectrum indicates that the enzyme contained one molecule of heme as iron protoporphyrin IX. The absorption maximum of the native enzyme (406 nm) shifted to 433 nm in the reduced enzyme and to 423 nm in the reduced-CO complex. Both CN- and N-3 readily bind to the native enzyme, indicating an available coordination site and that the heme iron is high spin. The absorption spectrum of the H2O2 enzyme complex, maximum at 420 nm, is similar to that of horseradish peroxidase compound II. P. chrysosporium peroxidase activity is dependent on Mn(II), with maximal activity attained above 100 microM. The enzyme is also stimulated to varying degrees by alpha-hydroxy acids (e.g., malic, lactic) and protein (e.g., gelatin, albumin). The peroxidase is capable of oxidizing NADH and a wide variety of dyes, including Poly B-411 and Poly R-481. Several of the substrates (indigo trisulfonate, NADH, Poly B-411, variamine blue RT salt, and Poly R-481) are oxidized by this Mn(II)-dependent peroxidase at considerably faster rates than those catalyzed by horseradish peroxidase. The enzyme rapidly oxidizes Mn(II) to Mn(III); the latter was detected by the characteristic absorption spectrum of its pyrophosphate complex. Inhibition of the oxidation of the substrate diammonium 2,2-azino-bis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) by Na-pyrophosphate suggests that Mn(III) plays a role in the enzyme mechanism.  相似文献   

11.
The function of Mn(III) in plant acid phosphatase has been investigated by a metal-substitution study, and some properties of the Fe(III)-substituted enzyme were compared with those of the native Mn(III) enzyme and mammalian Fe(III)-containing acid phosphatases. 19F nuclear magnetic resonance (NMR) and proton relaxation rate measurements showed that inhibitors such as F and nitrilotriacetic acid interact with paramagnetic Mn(III) active site. The 31P-NMR signal of the enzyme-phosphate complex was also broadened by the paramagnetic effect of Mn(III). In the metal-substitution experiments of the Mn(III)-acid phosphatase with Fe(III), Zn(II) and Cu(II), only the iron gave satisfactory substitution. The Fe(III)-substituted plant acid phosphatase exhibited an absorption maximum at 525 nm (ε = 3000), typical high spin ferric ESR signal at g = 4.39, and lower pH optimum (pH 4.8) than the native Mn(III)-enzyme (pH 5.8). The phosphatase activity of the Fe(III)-substituted enzyme was reduced to about 53% of that of the native enzyme. The substrate specificities of both metallophosphatases were remarkably similar, but different from that of the Fe(III)-containing uteroferrin. The present results indicate that Mn(III) and Fe(IIII) in the acid phosphatase play an important role on effective binding of phosphate and acceleration of hydrolysis of phosphomonoesters at pH 4–6.  相似文献   

12.
A novel preparation method for surfactant-MnP-Mn(II) ternary complex utilizing water-in-oil emulsions has been developed. The surfactant-MnP complex was spectroscopically characterized, strongly suggesting that the heme environment of the surfactant-MnP complex in benzene is identical to that of native MnP in the aqueous buffer. o-Phenylenediamine oxidation catalyzed by the surfactant-MnP-Mn(II) ternary complex was performed in benzene. The ternary complex efficiently catalyzed the oxidation, and the complex was catalytically stable. Kinetic experiments revealed that the reaction mechanism was as follows: MnP is oxidized by H(2)O(2) and the oxidized intermediate catalyzes the oxidation of Mn(II) to Mn(III) and the latter, after complexed with malonate, readily oxidizes o-PDA inside the complex. Thus, the organic substrate o-PDA, but not Mn(III), shuttled between the surfactant-MnP-Mn(II) ternary complex and organic solvent.  相似文献   

13.
Hanley J  Sarrou J  Petrouleas V 《Biochemistry》2000,39(50):15441-15445
The central part of the oxygen-evolving complex of photosystem II is a cluster of four manganese atoms. The known EPR spectra in the various oxidation states of the cluster are complicated by the magnetic interactions of the four Mn ions and accordingly are difficult to analyze. It has been shown recently that NO at -30 degrees C slowly reduces the cluster to a Mn(II)-Mn(III) state [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587). We study herein the orientation dependence of the Mn(II)-Mn(III) EPR spectrum with respect to the thylakoid membrane plane. Both the powder and the oriented spectra are satisfactorily simulated with the same set of fine and hyperfine parameters assuming axial symmetry and collinear g and A tensors. The axial component of the tensors is found to be oriented at an angle of 20 degrees +/- 10 degrees to the membrane plane normal (mosaic spread Omega = 40 degrees ). We make the reasonable assumption that the Mn(II)-Mn(III) dimer is one of the di-mu-oxo units that has been suggested to comprise the Mn tetramer. On the basis of the sign of the hyperfine tensor anisotropy, the axial direction is assigned to the d(z(2)) orbital of Mn(III), which by comparison with synthetic model complexes is assumed to be oriented perpendicular to the Mn-(mu-oxo)-Mn plane. The present results complement earlier orientation studies by EXAFS and suggest that the Mn-(mu-oxo)-Mn plane makes a small angle (approximately 20 degrees) with the membrane plane and the axis connecting the bridging oxygens is approximately parallel to the plane.  相似文献   

14.
Microorganisms catalyze the formation of naturally occurring Mn oxides, but little is known about the biochemical mechanisms of this important biogeochemical process. We used tandem mass spectrometry to directly analyze the Mn(II)-oxidizing enzyme from marine Bacillus spores, identified as an Mn oxide band with an in-gel activity assay. Nine distinct peptides recovered from the Mn oxide band of two Bacillus species were unique to the multicopper oxidase MnxG, and one peptide was from the small hydrophobic protein MnxF. No other proteins were detected in the Mn oxide band, indicating that MnxG (or a MnxF/G complex) directly catalyzes biogenic Mn oxide formation. The Mn(II) oxidase was partially purified and found to be resistant to many proteases and active even at high concentrations of sodium dodecyl sulfate. Comparative analysis of the genes involved in Mn(II) oxidation from three diverse Bacillus species revealed a complement of conserved Cu-binding regions not present in well-characterized multicopper oxidases. Our results provide the first direct identification of a bacterial enzyme that catalyzes Mn(II) oxidation and suggest that MnxG catalyzes two sequential one-electron oxidations from Mn(II) to Mn(III) and from Mn(III) to Mn(IV), a novel type of reaction for a multicopper oxidase.  相似文献   

15.
Structural and electronic changes (oxidation states) of the Mn(4)Ca complex of photosystem II (PSII) in the water oxidation cycle are of prime interest. For all four transitions between semistable S-states (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), and S(3),(4) --> S(0)), oxidation state and structural changes of the Mn complex were investigated by X-ray absorption spectroscopy (XAS) not only at 20 K but also at room temperature (RT) where water oxidation is functional. Three distinct experimental approaches were used: (1) illumination-freeze approach (XAS at 20 K), (2) flash-and-rapid-scan approach (RT), and (3) a novel time scan/sampling-XAS method (RT) facilitating particularly direct monitoring of the spectral changes in the S-state cycle. The rate of X-ray photoreduction was quantitatively assessed, and it was thus verified that the Mn ions remained in their initial oxidation state throughout the data collection period (>90%, at 20 K and at RT, for all S-states). Analysis of the complete XANES and EXAFS data sets (20 K and RT data, S(0)-S(3), XANES and EXAFS) obtained by the three approaches leads to the following conclusions. (i) In all S-states, the gross structural and electronic features of the Mn complex are similar at 20 K and room temperature. There are no indications for significant temperature-dependent variations in structure, protonation state, or charge localization. (ii) Mn-centered oxidation likely occurs on each of the three S-state transitions, leading to the S(3) state. (iii) Significant structural changes are coupled to the S(0) --> S(1) and the S(2) --> S(3) transitions which are identified as changes in the Mn-Mn bridging mode. We propose that in the S(2) --> S(3) transition a third Mn-(mu-O)(2)-Mn unit is formed, whereas the S(0) --> S(1) transition involves deprotonation of a mu-hydroxo bridge. In light of these results, the mechanism of accumulation of four oxidation equivalents by the Mn complex and possible implications for formation of the O-O bond are considered.  相似文献   

16.
High-resolution XANES (X-ray Absorption Near Edge Structure) spectroscopy for Mn in the S1 and S2 states of the spinach photosynthetic O2-evolving complex revealed distinct features in K-edge spectra, when a high signal-to-noise (S/N) ratio of ca. 80 with a low and constant background-to-signal (B/S) ratio of 0.15 to 0.18 was attained. Six features resolved in each S-state spectrum involve a pre-edge feature due to 1s----3d transitions, a main-edge feature possibly due to 1s----4s transitions and four fine structures superimposed on the principal absorption bands due to 1s----4p* transitions. The high-quality pre-edge features were analyzed according to a parametric ligand-field theory in comparison with those of some typical authentic Mn complexes. It was deduced that i) all of the four Mn ions in the S1-state are octahedrally coordinated and two of them constitute a di-mu-oxo bridged Mn(III, III) dimeric subunit; ii) the bridged Mn(III) ions are further bridged by a deprotonated water dimer, (HOHOH)-, and coordinated by imidazole-N and carboxylate-O- on the opposite side of the Mn atom from the di-mu-oxo bridge; iii) the other two Mn ions exist in the form of Mn(III) monomeric subunits; and iv) upon the S1----S2 transition, only the bridged Mn(III,III) is oxidized to Mn(III,IV). The distinct change in the principal absorption band shape upon the S1----S2 transition is briefly discussed to obtain the XANES evidence for a tetrameric Mn-cluster.  相似文献   

17.
On the basis of mutagenesis and X-ray crystallographic studies, Asp170 of the D1 polypeptide is widely believed to ligate the (Mn)4 cluster that is located at the catalytic site of water oxidation in photosystem II. Recent proposals for the mechanism of water oxidation postulate that D1-Asp170 ligates a Mn ion that undergoes oxidation during one or more of the S0 --> S1, S1 --> S2, and S2 --> S3 transitions. To test these hypotheses, we have compared the FTIR difference spectra of the individual S state transitions in wild-type* PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 with those in D1-D170H mutant PSII particles. Remarkably, our data show that the D1-D170H mutation does not significantly alter the mid-frequency regions (1800-1000 cm(-1)) of any of the FTIR difference spectra. Therefore, we conclude that the oxidation of the (Mn)4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Asp170 during the S0 --> S1, S1 --> S2, or S2 --> S3 transitions. The simplest explanation for these data is that the Mn ion that is ligated by D1-Asp170 does not increase its charge or oxidation state during any of these S state transitions. These data have profound implications for the mechanism of water oxidation. Either (1) the oxidation of the Mn ion that is ligated by D1-Asp170 occurs only during the transitory S3 --> S4 transition and serves as the critical step in the ultimate formation of the O-O bond or (2) the oxidation increments and O2 formation chemistry that occur during the catalytic cycle involve only the remaining Mn3Ca portion of the Mn4Ca cluster. Our data also show that, if the increased positive charge on the (Mn)4 cluster that is produced during the S1 --> S2 transition is delocalized over the (Mn)4 cluster, it is not delocalized onto the Mn ion that is ligated by D1-Asp170.  相似文献   

18.
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation.  相似文献   

19.
Hillier W  Babcock GT 《Biochemistry》2001,40(6):1503-1509
Vibrational spectroscopy provides a means to investigate molecular interactions within the active site of an enzyme. We have applied difference FTIR spectroscopy coupled with a flash turnover protocol of photosystem II (PSII) to study the oxygen evolving complex (OEC). Our data show two overlapping oscillatory patterns as the sample is flashed through the four-step S-state cycle that produces O(2) from two H(2)O molecules. The first oscillation pattern of the spectra shows a four-flash period four oscillation and reveals a number of new vibrational modes for each S-state transition, indicative of unique structural changes involved in the formation of each S-state. Importantly, the first and second flash difference spectra are reproduced in the 1800-1200 cm(-)(1) spectral region by the fifth and sixth flash difference spectra, respectively. The second oscillation pattern observed is a four-flash, period-two oscillation associated with changes primarily to the amide I and II modes and reports on changes in sign of these modes that alternate 0:0:1:1 during S-state advance. This four-flash, period-two oscillation undergoes sign inversion that alternates during the S(1)-to-S(2) and S(3)-to-S(0) transitions. Underlying this four-flash period two is a small-scale change in protein secondary structure in the PSII complex that is directly related to S-state advance. These oscillation patterns and their relationships with other PSII phenomena are discussed, and future work can initiate more detailed vibrational FTIR studies for the S-state transitions providing spectral assignments and further structural and mechanistic insight into the photosynthetic water oxidation reaction.  相似文献   

20.
Abstract

Reductive immobilization of Cr(VI) has been widely explored as a cost-effective approach for Cr-contaminated site remediation. In soils containing manganese oxides, however, the immobilized form of chromium, i.e., Cr(III), could potentially be reoxidized. In this study, batch experiments were conducted to assess whether there were any microbial processes that could accelerate Cr(III) oxidation in aerobic, manganese-containing systems. The results showed that in the presence of at least one species of manganese oxidizers, Pseudomonas putida, Cr(III) oxidation took place at low concentrations of Cr(III). About 30–50% of added Cr(III) (10–200 μ M) was oxidized to Cr(VI) within five days in the systems with P. putida and biogenic Mn oxides. The rate of Cr(III) oxidation was approximately proportional to the initial concentration of Cr(III) up to 100 μ M, but the growth of P. putida was partially inhibited by Cr(III) at 200 μ M and totally stopped when it reached 500 μ M. Cr(III) oxidation was dependent upon the biogenic formation of Mn oxides, though the oxidation rate was not directly proportional to the amount of Mn oxides formed. Chromium(III) oxidation took place through a catalytic pathway, in which the microbes mediated Mn(II) oxidation to form Mn-oxides, and Cr(III) was subsequently oxidized by the biogenic Mn-oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号