首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Structural features of a regulatory nucleosome   总被引:9,自引:0,他引:9  
DNA sequences from the long terminal repeat of the mouse mammary tumor virus (MMTV-LTR) position nucleosomes both in vivo and in vitro. Here, were present chromatin reconstitution experiments showing that MMTV-LTR sequences from -236 to +204 accommodate two histone octamers in positions compatible with the in vivo data. This positioning is not influenced by the length of the DNA fragment and occurs in linear as well as in closed circular DNA molecules. MMTV-LTR DNA sequences show an intrinsic bendability that closely resembles its wrapping around the histone octamer. We propose that bendability is responsible for the observed rotational nucleosome positioning. Translational nucleosome positioning seems also to be determined by the DNA sequence. These data, along with the results from reconstitution experiments with insertion mutants, support a modular model of nucleosome phasing on MMTV-LTR, where the actual positioning of the histone octamer results from the additive effect of multiple features of the DNA sequence.  相似文献   

2.
Nucleosome positioning determinants   总被引:1,自引:0,他引:1  
  相似文献   

3.
Unique translational positioning of nucleosomes on synthetic DNAs.   总被引:2,自引:0,他引:2       下载免费PDF全文
A computational study was previously carried out to analyze DNA sequences that are known to position histone octamers at single translational sites. A conserved pattern of intrinsic DNA curvature was uncovered that was proposed to direct the formation of nucleosomes to unique positions. The pattern consists of two regions of curved DNA separated by preferred lengths of non-curved DNA. In the present study, 11 synthetic DNAs were constructed which contain two regions of curved DNA of the form [(A5.T5)(G/C)5]4 separated by non-curved regions of variable length. Translational mapping experiments of in vitro reconstituted mononucleosomes using exonuclease III, micrococcal nuclease and restriction enzymes demonstrated that two of the fragments positioned nucleosomes at a single site while the remaining fragments positioned octamers at multiple sites spaced at 10 base intervals. The synthetic molecules that positioned nucleosomes at a single site contain non-curved central regions of the same lengths that were seen in natural nucleosome positioning sequences. Hydroxyl radical and DNase I digests of the synthetic DNAs in reconstituted nucleosomes showed that the synthetic curved element on one side of the nucleosomal dyad assumed a rotational orientation where narrow minor grooves of the A-tracts faced the histone surface with all molecules. In contrast, the curved element on the other side of the nucleosome displayed variable rotational orientations between molecules which appeared to be related to the positioning effect. These results suggest that asymmetry between the two halves of nucleosomal DNA may facilitate translational positioning.  相似文献   

4.
5.
The roles and interdependence of DNA sequence and archaeal histone fold structure in determining archaeal nucleosome stability and positioning have been determined and quantitated. The presence of four tandem copies of TTTAAAGCCG in the polylinker region of pLITMUS28 resulted in a DNA molecule with increased affinity (DeltaDeltaG of approximately 700 cal mol(-1)) for the archaeal histone HMfB relative to the polylinker sequence, and the dominant, quantitative contribution of the helical repeats of the dinucleotide TA to this increased affinity has been established. The rotational and translational positioning of archaeal nucleosomes assembled on the (TTTAAAGCCG)(4) sequence and on DNA molecules selectively incorporated into archaeal nucleosomes by HMfB have been determined. Alternating A/T- and G/C-rich regions were located where the minor and major grooves, respectively, sequentially faced the archaeal nucleosome core, and identical positioning results were obtained using HMfA, a closely related archaeal histone also from Methanothermus fervidus. However, HMfA did not have similarly high affinities for the HMfB-selected DNA molecules, and domain-swap experiments have shown that this difference in affinity is determined by residue differences in the C-terminal region of alpha-helix 3 of the histone fold, a region that is not expected to directly interact with DNA. Rather this region is thought to participate in forming the histone dimer:dimer interface at the center of an archaeal nucleosome histone tetramer core. If differences in this interface do result in archaeal histone cores with different sequence preferences, then the assembly of alternative archaeal nucleosome tetramer cores could provide an unanticipated and novel structural mechanism to regulate gene expression.  相似文献   

6.
Mobility of positioned nucleosomes on 5 S rDNA   总被引:13,自引:0,他引:13  
  相似文献   

7.
8.
We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.  相似文献   

9.
Our laboratories recently completed SELEX experiments to isolate DNA sequences that most-strongly favor or disfavor nucleosome formation and positioning, from the entire mouse genome or from even more diverse pools of chemically synthetic random sequence DNA. Here we directly compare these selected natural and non-natural sequences. We find that the strongest natural positioning sequences have affinities for histone binding and nucleosome formation that are sixfold or more lower than those possessed by many of the selected non-natural sequences. We conclude that even the highest-affinity sequence regions of eukaryotic genomes are not evolved for the highest affinity or nucleosome positioning power. Fourier transform calculations on the selected natural sequences reveal a special significance for nucleosome positioning of a motif consisting of approximately 10 bp periodic placement of TA dinucleotide steps. Contributions to histone binding and nucleosome formation from periodic TA steps are more significant than those from other periodic steps such as AA (=TT), CC (=GG) and more important than those from the other YR steps (CA (=TG) and CG), which are reported to have greater conformational flexibility in protein-DNA complexes even than TA. We report the development of improved procedures for measuring the free energies of even stronger positioning sequences that may be isolated in the future, and show that when the favorable free energy of histone-DNA interactions becomes sufficiently large, measurements based on the widely used exchange method become unreliable.  相似文献   

10.
Archaeal histones and the eucaryal (eucaryotic) nucleosome core histones have almost identical histone folds. Here, we show that DNA molecules selectively incorporated by rHMfB (recombinant archaeal histone B from Methanothermus fervidus) into archaeal nucleosomes from a mixture of approximately 10(14) random sequence molecules contain sequence motifs shown previously to direct eucaryal nucleosome positioning. The dinucleotides GC, AA (=TT) and TA are repeated at approximately 10 bp intervals, with the GC harmonic displaced approximately 5 bp from the AA and TA harmonics [(GCN(3)AA or TA)(n)]. AT and CG were not strongly selected, indicating that TA not equalAT and GC not equalCG in terms of facilitating archaeal nucleosome assembly. The selected molecules have affinities for rHMfB ranging from approximately 9 to 18-fold higher than the level of affinity of the starting population, and direct the positioned assembly of archaeal nucleosomes. Fourier-transform analyses have revealed that AA dinucleotides are much enriched at approximately 10. 1 bp intervals, the helical repeat of DNA wrapped around a nucleosome, in the genomes of Eucarya and the histone-containing Euryarchaeota, but not in the genomes of Bacteria and Crenarchaeota, procaryotes that do not have histones. Facilitating histone packaging of genomic DNA has apparently therefore imposed constraints on genome sequence evolution, and since archaeal histones have no structure in addition to the histone fold, these constraints must result predominantly from histone fold-DNA contacts. Based on the three-domain universal phylogeny, histones and histone-dependent genome sequence evolution most likely evolved after the bacterial-archaeal divergence but before the archaeal-eucaryal divergence, and were subsequently lost in the Crenarchaeota. However, with lateral gene transfer, the first histone fold could alternatively have evolved after the archaeal-eucaryal divergence, early in either the euryarchaeal or eucaryal lineages.  相似文献   

11.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

12.
Reconstitution of mononucleosomes from DNA and core histones was carried out to study the positioning of histone octamers on the DNA. Using random DNA molecules in the 200 to 250 bp size range we found that the reconstitution products consisted of a mixture of three different types of particles that could be separated by low ionic strength gel electrophoresis. In one particle, DNA was complexed with histones along its entire length indicating the binding of more than one histone octamer. The second particle contained only one histone core that was always associated, however, with the terminal 145 bp of the DNA regardless of its sequence which can be ascribed to a DNA end effect. Only the third particle consisted of histone octamers bound at internal positions of the DNA and is therefore the only particle suitable for investigating the influence of the DNA sequence on the positioning of the histone cores. A defined 154 bp pBR 322 restriction fragment that contains three BspRI restriction sites was also reconstituted with core histones. The accessibility of these sites to BspRI was measured in order to delineate the utility of restriction nucleases as probes for the structure of chromatin. Two sites located close to the center of the DNA were less susceptible by at least a factor of 1000 as compared to free DNA while the susceptibility of the third site in the terminal section of the DNA decreased about 50 fold after reconstitution.  相似文献   

13.
Nucleosome positioning along the genome is partially determined by the intrinsic DNA sequence preferences on histone. RRRRRYYYYY (R5Y5, R?=?Purine and Y?=?Pyrimidine) motif in nucleosome DNA, which was presented based on several theoretical models by Trifonov et al., might be a facilitating sequence pattern for nucleosome assembly. However, there is not a high conformity experimental evidence to support the concept that R5Y5 motif is a key element for the determination of nucleosome positioning. In this work, the ability of the canonical, H2A.Z- and H3.3-containing octamers to assemble nucleosome on DNA templates containing R5Y5 motif and TA repeats within 10.5-bp periodicity was investigated by using salt-dialysis method in vitro. The results showed that the10.5-bp periodical distributions of both R5Y5 motif and TA repeats along DNA templates can significantly promote canonical nucleosome assembly and may be key sequence factors for canonical nucleosome assembly. Compared with TA repeats within 10.5-bp periodicity, R5Y5 motif in DNA templates did not elevate H2A.Z- and H3.3-containing nucleosome formation efficiency in vitro. This result indicates that R5Y5 motif probably isn’t a pivotal factor to regulate nucleosome assembly on histone variants. It is speculated that the regulatory mechanism of nucleosome assembly is different between canonical and variant histone. These conclusions can provide a deeper insight on the mechanism of nucleosome positioning.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
MMTV-LTR sequences -190/-45 position a histone octamer both in vivo and in vitro. Experimental evidence suggested that nucleosome rotational positioning is determined by the DNA sequence itself. We developed an algorithm that is able to predict the most favorable path of a given DNA sequence over a histone octamer, based on rotational preferences of different dinucleotides. Our analysis shows that these preferences are sufficient for explaining the observed rotational positioning of the MMTV-LTR nucleosome, at one base pair accuracy level. Computer-generated 3-D models of the experimentally calculated and predicted MMTV-LTR nucleosome show that the predicted orientation is fully compatible with the currently available data in terms of accessibility of relevant sequences to regulatory proteins.  相似文献   

15.
Using the method of salt dialysis, we have reconstituted histone octamers onto DNA templates consisting of 12 tandem repeats, each containing a fragment of the sea urchin 5S rRNA gene [Simpson, R.T., Thoma, F., & Brubaker, J.M. (1985) Cell 42, 799-808]. In these templates, each sea urchin repeat contains a sequence for preferred nucleosome positioning. Sedimentation velocity and sedimentation equilibrium studies in the analytical ultracentrifuge indicate that at molar histone/DNA ratios of 1.0-1.1 extremely homogeneous preparations of fully loaded oligonucleosomes (12 nucleosomes/template) can be regularly obtained. Digestion of the oligonucleosomes with micrococcal nuclease, followed by restriction mapping of purified nucleosome-bound DNA sequences, yields a complicated but consistent pattern of nucleosome positioning. Roughly 50% of the nucleosomes appear to be phased at positions 1-146 of each repeat, while the remainder of the nucleosomes occupy a number of other minor discrete positions along the template that differ by multiples of 10 bp. From sedimentation velocity studies of the oligonucleosomes in 0-0.2 M NaCl, we observe a reversible increase in mean sedimentation coefficient by almost 30%, accompanied by development of heterogeneity in sedimentation. These results, in combination with theoretical predictions, indicate that linear stretches of chromatin in the absence of lysine-rich histones exist in solution in a salt-dependent equilibrium between an extended (low salt) conformation and one or more folded (high salt) structures. In addition, by 100 mM NaCl, salt-dependent dissociation of histone octamers from these linear oligonucleosomes is observed.  相似文献   

16.
Attraction, phasing and neighbour effects of histone octamers on curved DNA   总被引:6,自引:0,他引:6  
Nucleosome core particles were reconstituted on various DNA fragments containing a Crithidia fasciculata kinetoplast curved tract. The results show that, on curved DNA, nucleosome core particles form six- to sevenfold preferentially, relative to bulk sequences. The preferential deposition occurs at multiple periodic positions, whose distribution reveals a unique rotational setting of DNA with respect to the histone octamer surface and whose average periodicity is 10.26 +/- 0.04. Evidence is provided for a context effect in histone octamer deposition: octamers bound to a segment of curved DNA influence the positions of neighbour octamers. Taken together, the preferential formation of nucleosome core particles and the influence on the localization of neighbouring particles suggest for intrinsically bent sequences the biologically relevant role of organizers of nucleosomal arrays.  相似文献   

17.
S Tanaka  M Zatchej    F Thoma 《The EMBO journal》1992,11(3):1187-1193
DNA sequences that support bending around the histone octamer ('rotational setting') are considered to be a major determinant of nucleosome positions. TG5 is an artificial positioning sequence containing 100 bp of an (A/T)3NN(G/C)3NN motif repeated with a 10 bp period. It provides a strong rotational setting and is superior to natural sequences in nucleosome formation in vitro [Shrader, T.E. and Crothers, D.M. (1989) Proc. Natl. Acad. Sci. USA, 86, 7418-7422]. To investigate the contribution of the rotational setting to nucleosome positioning in vivo, TG sequences were inserted in a nucleosome, at the edge of a nucleosome and in a nuclease sensitive region of yeast minichromosomes and the chromatin structures were analysed. In none of the constructs were TG sequences folded in a positioned nucleosome, demonstrating that the rotational setting played a subordinate role in the rough positioning in vivo. The rotational setting might fine tune the positions. Positioned nucleosomes were found overlapping the ends of TG, indicating that a discontinuity of the 10 bp periodicity of (A/T)3 and (G/C)3 near the centre of a nucleosome might be favourable for positioning and serve as a translational signal.  相似文献   

18.
Echinomycin and distamycin induce rotation of nucleosome core DNA.   总被引:8,自引:7,他引:1       下载免费PDF全文
C M Low  H R Drew    M J Waring 《Nucleic acids research》1986,14(17):6785-6801
When nucleosome cores reconstituted from chicken erythrocyte histones and a 160 bp DNA molecule are exposed to echinomycin, a bis-intercalating antitumour antibiotic, the DNA appears to rotate with respect to the histone octamer by about half a turn. New bands appear in patterns of DNAase I digestion at positions approximately mid-way between those characteristic of control core samples, while the control pattern is largely suppressed. Similar (but not identical) changes are produced when nucleosome cores are exposed to distamycin, a non-intercalating DNA-binding antibiotic. The effects of both ligands can be explained in terms of a change in rotational orientation of the core DNA, so as to place antibiotic binding sites on the inward-facing (concave) surface of the DNA supercoil. Presumably this serves to optimise non-bonded contacts with the polynucleotide backbone. These results establish that the positioning of DNA about the histone octamer is not absolutely determined by its nucleotide sequence, but may be modified by the binding of such relatively small molecules as antibiotics.  相似文献   

19.
20.
The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号