首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase synchronization has been an effective measurement of functional connectivity, detecting similar dynamics over time among distinct brain regions. However, traditional phase synchronization-based functional connectivity indices have been proved to have some drawbacks. For example, the phase locking value (PLV) index is sensitive to volume conduction, while the phase lag index (PLI) and the weighted phase lag index (wPLI) are easily affected by noise perturbations. In addition, thresholds need to be applied to these indices to obtain the binary adjacency matrix that determines the connections. However, the selection of the thresholds is generally arbitrary. To address these issues, in this paper we propose a novel index of functional connectivity, named the phase lag based on the Wilcoxon signed-rank test (PLWT). Specifically, it characterizes the functional connectivity based on the phase lag with a weighting procedure to reduce the influence of volume conduction and noise. Besides, it automatically identifies the important connections without relying on thresholds, by taking advantage of the framework of the Wilcoxon signed-rank test. The performance of the proposed PLWT index is evaluated on simulated electroencephalograph (EEG) datasets, as well as on two resting-state EEG datasets. The experimental results on the simulated EEG data show that the PLWT index is robust to volume conduction and noise. Furthermore, the brain functional networks derived by PLWT on the real EEG data exhibit a reasonable scale-free characteristic and high test–retest (TRT) reliability of graph measures. We believe that the proposed PLWT index provides a useful and reliable tool to identify the underlying neural interactions, while effectively diminishing the influence of volume conduction and noise.  相似文献   

2.
人脑功能连通性研究进展   总被引:5,自引:0,他引:5  
对人脑结构和功能的深入研究,已经要求脑成像技术不能仅仅局限于研究简单的脑功能定位问题,即寻找和定位与特定认知任务相关的某一块或者一组大脑皮层功能区,而必须研究分析各功能区间的动态功能连通和整合问题,即描述特定脑功能区域间的交互作用以及这些交互作用如何受认知任务的影响.已有几种非常规的脑成像技术和数据分析方法,包括时间相关性分析、心理生理交互作用(PPI)、结构方程模型(SEM)、动态因果模型(DCM)、弥散张量成像(DTI)等等,被成功用于人脑功能连通性和有效连通性的研究.脑功能连通性研究的发展,有利于深入理解人脑在系统水平上的动态运作方式,是今后认知神经科学发展的一个重要方向.  相似文献   

3.
Lithium therapy has been shown to affect imaging measures of brain function and microstructure in human immunodeficiency virus (HIV)-infected subjects with cognitive impairment. The aim of this proof-of-concept study was to explore whether changes in brain microstructure also entail changes in functional connectivity. Functional MRI data of seven cognitively impaired HIV infected individuals enrolled in an open-label lithium study were included in the connectivity analysis. Seven regions of interest (ROI) were defined based on previously observed lithium induced microstructural changes measured by Diffusion Tensor Imaging. Generalized partial directed coherence (gPDC), based on time-variant multivariate autoregressive models, was used to quantify the degree of connectivity between the selected ROIs. Statistical analyses using a linear mixed model showed significant differences in the average node strength between pre and post lithium therapy conditions. Specifically, we found that lithium treatment in this population induced changes suggestive of increased strength in functional connectivity. Therefore, by exploiting the information about the strength of functional interactions provided by gPDC we can quantify the connectivity changes observed in relation to a given intervention. Furthermore, in conditions where the intervention is associated with clinical changes, we suggest that this methodology could enable an interpretation of such changes in the context of disease or treatment induced modulations in functional networks.  相似文献   

4.
Estimating the functional interactions and connections between brain regions to corresponding process in cognitive, behavioral and psychiatric domains is a central pursuit for understanding the human connectome. Few studies have examined the effects of dynamic evolution on cognitive processing and brain activation using brain network model in scalp electroencephalography (EEG) data. Aim of this study was to investigate the brain functional connectivity and construct dynamic programing model from EEG data and to evaluate a possible correlation between topological characteristics of the brain connectivity and cognitive evolution processing. Here, functional connectivity between brain regions is defined as the statistical dependence between EEG signals in different brain areas and is typically determined by calculating the relationship between regional time series using wavelet coherence. We present an accelerated dynamic programing algorithm to construct dynamic cognitive model that we found that spatially distributed regions coherence connection difference, the topologic characteristics with which they can transfer information, producing temporary network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time after variation audio stimulation, dynamic programing model gives the dynamic evolution processing at different time and frequency. In this paper, by applying a new construct approach to understand whole brain network dynamics, firstly, brain network is constructed by wavelet coherence, secondly, different time active brain regions are selected by network topological characteristics and minimum spanning tree. Finally, dynamic evolution model is constructed to understand cognitive process by dynamic programing algorithm, this model is applied to the auditory experiment, results showed that, quantitatively, more correlation was observed after variation audio stimulation, the EEG function connection dynamic evolution model on cognitive processing is feasible with wavelet coherence EEG recording.  相似文献   

5.
Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction.  相似文献   

6.
In this paper, we investigate the use of partial correlation analysis for the identification of functional neural connectivity from simultaneously recorded neural spike trains. Partial correlation analysis allows one to distinguish between direct and indirect connectivities by removing the portion of the relationship between two neural spike trains that can be attributed to linear relationships with recorded spike trains from other neurons. As an alternative to the common frequency domain approach based on the partial spectral coherence we propose a new statistic in the time domain. The new scaled partial covariance density provides additional information on the direction and the type, excitatory or inhibitory, of the connectivities. In simulation studies, we investigated the power and limitations of the new statistic. The simulations show that the detectability of various connectivity patterns depends on various parameters such as connectivity strength and background activity. In particular, the detectability decreases with the number of neurons included in the analysis and increases with the recording time. Further, we show that the method can also be used to detect multiple direct connectivities between two neurons. Finally, the methods of this paper are illustrated by an application to neurophysiological data from spinal dorsal horn neurons.  相似文献   

7.
基于fMRI的脑功能整合数据分析方法综述   总被引:1,自引:0,他引:1  
脑功能成像在人脑信息处理和认知活动的神经关联中发挥了不可轻视的作用.从大脑功能整合出发,可以将脑功能成像数据分析方法分为探测大脑功能整合的功能连接和有效连接两方面,功能连接探究空间远离的两个脑区之间的连接,有效连接研究一个脑区对另一个脑区作用的大小.根据这两个概念,相应地可以将功能磁共振数据分析方法分为两大类.本文着重...  相似文献   

8.
L Wang  L Su  H Shen  D Hu 《PloS one》2012,7(8):e44530
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.  相似文献   

9.
This review focuses on some practical issues of using vector autoregressive model (VAR) for multichannel EEG analysis. Those issues include: EEG preprocessing, checking if the necessary conditions of VAR model applicability are met, optimal order selection, and assessment of the validity of fitted VAR model. Both non-directed (ordinary coherence and imaginary part of the complex-valued coherency) and directed (directed coherence, directed transfer function and partial directed coherence) measures of the strength of inter-channel coupling are discussed. These measures are analyzed with respect to their properties (scale invariance) and known problems in using them (spurious interactions, volume conduction).  相似文献   

10.
In this paper, we will present and review the most usual methods to detect linear and nonlinear causality between signals: linear Granger causality test (Geweke in J Am Stat Assoc 77:304–313, 1982) extended to direct causality in multivariate case (LGC), directed coherence (DCOH, Saito and Harashima in Recent advances in EEG and EMG data processing, Elsevier, Amsterdam, 1981), partial directed coherence (PDC, Sameshima and Baccala 1999) and nonlinear Granger causality test of Baek and Brock (in Working Paper University of Iowa, 1992) extended to direct causality in multivariate case (partial nonlinear Granger causality, PNGC). All these methods are tested and compared on several ARX, Poisson and nonlinear models, and on neurophysiological data (depth EEG). The results show that LGC, DCOH and PDC are not very robust in relation to nonlinear linkages but they seem to correctly find linear linkages if only the autoregressive parts are nonlinear. PNGC is extremely dependent on the choice of parameters. Moreover, LGC and PNGC may give misleading results in the case of causality on a spectral band, which is illustrated by our neurophysiological database.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

11.
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.  相似文献   

12.
Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.  相似文献   

13.
The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.  相似文献   

14.
15.
The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step in identifying the neural mechanisms of language and executive dysfunction in common neurodevelopmental and psychiatric disorders where disruptions of callosal development are consistently identified.  相似文献   

16.
A central issue in cognitive neuroscience is which cortical areas are involved in managing information processing in a cognitive task and to understand their temporal interactions. Since the transfer of information in the form of electrical activity from one cortical region will in turn evoke electrical activity in other regions, the analysis of temporal synchronization provides a tool to understand neuronal information processing between cortical regions. We adopt a method for revealing time-dependent functional connectivity. We apply statistical analyses of phases to recover the information flow and the functional connectivity between cortical regions for high temporal resolution data. We further develop an evaluation method for these techniques based on two kinds of model networks. These networks consist of coupled Rössler attractors or of coupled stochastic Ornstein–Uhlenbeck systems. The implemented time-dependent coupling includes uni- and bi-directional connectivities as well as time delayed feedback. The synchronization dynamics of these networks are analyzed using the mean phase coherence, based on averaging over phase-differences, and the general synchronization index. The latter is based on the Shannon entropy. The combination of these with a parametric time delay forms the basis of a connectivity pattern, which includes the temporal and time lagged dynamics of the synchronization between two sources. We model and discuss potential artifacts. We find that the general phase measures are remarkably stable. They produce highly comparable results for stochastic and periodic systems. Moreover, the methods proves useful for identifying brief periods of phase coupling and delays. Therefore, we propose that the method is useful as a basis for generating potential functional connective models.  相似文献   

17.
Zheng B  Lu X 《Genome biology》2007,8(7):R153
We present the metrics for assessing overall functional coherence of a group of proteins based on associated biomedical literature. A probabilistic topic model is applied to extract biologic concepts from a corpus of protein-related biomedical literature. Bipartite protein semantic networks are constructed, so that the functional coherence of a protein group can be evaluated with metrics that measure the closeness and strength of connectivity of the proteins in the network.  相似文献   

18.
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.  相似文献   

19.
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful.  相似文献   

20.
Complex processes resulting from interaction of multiple elements can rarely be understood by analytical scientific approaches alone; additional, mathematical models of system dynamics are required. This insight, which disciplines like physics have embraced for a long time already, is gradually gaining importance in the study of cognitive processes by functional neuroimaging. In this field, causal mechanisms in neural systems are described in terms of effective connectivity. Recently, dynamic causal modelling (DCM) was introduced as a generic method to estimate effective connectivity from neuroimaging data in a Bayesian fashion. One of the key advantages of DCM over previous methods is that it distinguishes between neural state equations and modality-specific forward models that translate neural activity into a measured signal. Another strength is its natural relation to Bayesian model selection (BMS) procedures. In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing the application of BMS in the context of DCM, we conclude with an outlook to future extensions of DCM. These extensions are guided by the long-term goal of using dynamic system models for pharmacological and clinical applications, particularly with regard to synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号