首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.  相似文献   

2.
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells.  相似文献   

3.
Golgi inheritance during mammalian cell division occurs through the disassembly, partitioning, and reassembly of Golgi membranes. The mechanisms responsible for these processes are poorly understood. To address these mechanisms, we have examined the identity and dynamics of Golgi proteins within mitotic membranes using live cell imaging and electron microscopy techniques. Mitotic Golgi fragments, seen in prometaphase and telophase, were found to localize adjacent to endoplasmic reticulum (ER) export domains, and resident Golgi transmembrane proteins cycled rapidly into and out of these fragments. Golgi proteins within mitotic Golgi haze-seen during metaphase-were found to redistribute with ER markers into fragments when the ER was fragmented by ionomycin treatment. The temperature-sensitive misfolding mutant ts045VSVG protein, when localized to the Golgi at the start of mitosis, became trapped in the ER at the end of mitosis in cells shifted to 40 degrees C. Finally, reporters for Arf1 and Sar1 activity revealed that Arf1 and Sar1 undergo sequential inactivation during mitotic Golgi breakdown and sequential reactivation upon Golgi reassembly at the end of mitosis. Together, these findings support a model of mitotic Golgi inheritance that involves inhibition and subsequent reactivation of cellular activities controlling the cycling of Golgi components into and out of the ER.  相似文献   

4.
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery.  相似文献   

5.
Cytochemical studies with over 40 different mammalian cell types have indicated that NADPase activity is associated with the Golgi apparatus and/or lysosomes of all cells. In the majority of cases, NADPase is restricted to saccular elements comprising the medial region of the Golgi stack and an occasional lysosome. There is often weak NADPase activity in other Golgi compartments such as the trans Golgi saccules and/or elements of the trans Golgi network. In some cells, however, strong NADPase activity is found within these latter compartments, either exclusively in trans Golgi saccules or elements of the trans Golgi network, or in combination with medial Golgi saccules and each other including (1) medial Golgi saccules + trans Golgi saccules, (2) medial Golgi saccules + trans Golgi saccules + trans Golgi network, or (3) trans Golgi saccules + trans Golgi network. In some rare cases, no NADPase activity is detectable in either Golgi saccules or elements of the trans Golgi network, but it is observed in an occasional lysosome or throughout the lysosomal system of these cells. It is unclear at present if these variations in the distribution of NADPase across the Golgi apparatus, and between the Golgi apparatus and lysosomal system, are due to differences in targeting mechanisms or to the existence of "bottlenecks" in the natural flow of NADPase along the biosynthetic pathway toward lysosomes. While no clear pattern in the association of strong NADPase activity with lysosomes was apparent relative to the ultrastructural distribution of NADPase activity in Golgi saccules or elements of the trans Golgi network, the results of this investigation suggested that cells having NADPase localized predominantly toward the trans aspect of the Golgi apparatus (in trans Golgi saccules or elements of the trans Golgi network or both) have few NADPase-positive lysosomes. The only exception is hepatocytes which were classified as predominantly trans but had noticeable NADPase activity within medial Golgi saccules and elements of the trans Golgi network as well, and highly reactive lysosomes. Other cells showing highly reactive lysosomes including (1) Kupffer cells of liver and those forming the proximal convoluted tubules of the kidney, both of which also had strong NADPase activity within medial and trans Golgi saccules and elements of the trans Golgi network, (2) Leydig cells of the testis and interstitial cells of the ovary, which also showed strong NADPase activity within medial Golgi saccules, and (3) macrophages from lung, spleen and testis, and Sertoli cells from the testis all of which showed no Golgi associated NADPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The biogenesis of endothelial-specific Weibel-Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3-dependent (AP-3-dependent), and AP-3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P-selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP-3, which operates in post-Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P-selectin is recruited to forming WPB in the trans-Golgi by AP-3-independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already-budded WPB by an AP-3-dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC).  相似文献   

7.
Protein glycosylation is one of the major biosynthetic functions occurring in the endoplasmic reticulum and Golgi compartments. It requires an amazing number of enzymes, chaperones, lectins and transporters whose actions delicately secure the fidelity of glycan structures. Over the past 30 years, glycobiologists hammered that glycan structures are not mere decorative elements but serve crucial cellular functions. This becomes dramatically illustrated by a group of mostly severe, inherited human disorders named congenital disorders of glycosylation (CDG). To date, many types of CDG have been defined genetically and most of the time the defects impair the biosynthesis, transfer and remodeling of N-glycans. Recently, the identification of the several types of CDG caused by deficiencies in the conserved oligomeric Golgi (COG) complex, a complex involved in vesicular Golgi trafficking, expanded the field of CDG but also brought novel insights in glycosylation. The molecular mechanisms underlying the complex pathway of N-glycosylation in the Golgi are far from understood. The availability of COG-deficient CDG patients and patients' cells offered a new way to study how COG, and its different subunits, could influence the Golgi N-glycosylation machinery and localization. This review summarizes the recent findings on the implication of COG in Golgi glycosylation. It highlights the need for a dynamic, finely tuned balance between anterograde and retrograde trafficking for the correct localization of Golgi enzymes to assure the stepwise maturation of N-glycan chains.  相似文献   

8.
A typical vertebrate cell contains several hundred sites of transitional ER (tER). Presumably, tER sites generate elements of the ER-Golgi intermediate compartment (ERGIC), and ERGIC elements then generate Golgi cisternae. Therefore, characterizing the mechanisms that influence tER distribution may shed light on the dynamic behavior of the Golgi. We explored the properties of tER sites using Sec13 as a marker protein. Fluorescence microscopy confirmed that tER sites are long-lived ER subdomains. tER sites proliferate during interphase but lose Sec13 during mitosis. Unlike ERGIC elements, tER sites move very little. Nevertheless, when microtubules are depolymerized with nocodazole, tER sites redistribute rapidly to form clusters next to Golgi structures. Hence, tER sites have the unusual property of being immobile, yet dynamic. These findings can be explained by a model in which new tER sites are created by retrograde membrane traffic from the Golgi. We propose that the tER-Golgi system is organized by mutual feedback between these two compartments.  相似文献   

9.
The Golgi apparatus has long been suggested to be important for directing secretion to specific sites on the plasma membrane in response to extracellular signaling events. However, the mechanisms by which signaling events are coordinated with Golgi apparatus function remain poorly understood. Here, we identify a scaffolding function for the Golgi matrix protein GM130 that sheds light on how such signaling events may be regulated. We show that the mammalian Ste20 kinases YSK1 and MST4 target to the Golgi apparatus via the Golgi matrix protein GM130. In addition, GM130 binding activates these kinases by promoting autophosphorylation of a conserved threonine within the T-loop. Interference with YSK1 function perturbs perinuclear Golgi organization, cell migration, and invasion into type I collagen. A biochemical screen identifies 14-3-3zeta as a specific substrate for YSK1 that localizes to the Golgi apparatus, and potentially links YSK1 signaling at the Golgi apparatus with protein transport events, cell adhesion, and polarity complexes important for cell migration.  相似文献   

10.
Although the actin cytoskeleton is widely believed to play an important role in intracellular protein transport, this role is poorly understood. Recently, progress has been made toward identifying specific actin-binding proteins and signaling molecules involved in regulating actin structures that function in the secretory pathway. Studies on coat protomer I (COPI)-mediated transport at the Golgi apparatus and on clathrin-mediated endocytosis have been particularly informative in identifying such mechanisms. Important similarities between actin regulation at the Golgi and at the plasma membrane have been uncovered. The studies reveal that ADP-ribosylation factor and vesicle coat proteins are able to act through the Rho-family GTP-binding proteins, Cdc42 and Rac, and several specific actin-binding proteins to direct actin assembly through the Arp2/3 complex. Efficient function of the secretory pathway is likely to require precise temporal regulation among transport-vesicle assembly, vesicle scission, and the targeting machinery. It is proposed that numerous actin regulatory mechanisms and the connections between actin signaling and vesicle-coat formation are employed to provide such temporal regulation.  相似文献   

11.
Lipid regulators of membrane traffic through the Golgi complex.   总被引:6,自引:0,他引:6  
Enzymes that modify phospholipids play necessary, but poorly understood, roles in constitutive membrane traffic. Local production of specific phosphoinositides is required for endocytosis and regulated exocytosis, and enzymes that produce and consume phosphoinositides are components of post-Golgi membrane vesicles. Both biochemical and genetic data indicate that regulation of the membrane content of phosphatidic acid, diacylglycerol and phosphoinositides is necessary for protein traffic from the Golgi complex. Evidence for a regulatory role for lipids earlier in the constitutive secretory pathway is more limited and controversial. Although the mechanisms that regulate traffic between the endoplasmic reticulum and Golgi might be qualitatively different from those that control later membrane transport pathways, recent studies suggest that production of specific lipids is important for transport both into and out of the Golgi. As discussed in this article, one potential mechanism for the involvement of lipids is to control the GTPase cycle of a small GTP-binding protein, ARF (ADP-ribosylation factor).  相似文献   

12.
The Sar1 GTPase coordinates the assembly of coat protein complex‐II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER‐to‐Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII‐mediated transport in mammalian cells, we used small interfering RNA (siRNA)‐mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER‐to‐Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen‐I is inhibited. These data provide proof‐of‐principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII .  相似文献   

13.
In plant cells Golgi apparatus organization, maintenance and distribution differ from that in mammalian cells and the mechanisms for this are not clearly understood. Here we investigate the role of microtubules in the positioning and arrangement of Golgi apparatus in the root cells of Triticum aestivum L. by using dual immunofluorescent labeling and laser confocal microscopy to localize both throughout the cell cycle. We observed that Golgi stacks (i) in interphase cells predominantly occupied the perinuclear region, (ii) during mitosis they redistributed to the spindle periphery and/or areas above spindle poles, and (iii) in telophase accumulated around the phragmoplast and the chromosomes/nuclei of daughter cells. Inhibition of microtubule assembly by colchicine resulted in aggregation of Golgi in the cortical cytoplasm of interphase cells and accumulation around the chromosomes in C-mitotic cells, in stark contrast with the distribution in untreated cells. Electron microscopy revealed that in colchicine treated cells many Golgi units became disorganized, yet others were abnormally enlarged. Overall, our results indicate that in plant cells microtubules play a key role in restricting the position and maintaining the arrangement and structural integrity of the Golgi apparatus.  相似文献   

14.
The integration of the vimentin intermediate filament (IF) cytoskeleton and cellular organelles in vivo is an incompletely understood process, and the identities of proteins participating in such events are largely unknown. Here, we show that the Golgi complex interacts with the vimentin IF cytoskeleton, and that the Golgi protein formiminotransferase cyclodeaminase (FTCD) participates in this interaction. We show that the peripherally associated Golgi protein FTCD binds directly to vimentin subunits and to polymerized vimentin filaments in vivo and in vitro. Expression of FTCD in cultured cells results in the formation of extensive FTCD-containing fibers originating from the Golgi region, and is paralleled by a dramatic rearrangements of the vimentin IF cytoskeleton in a coordinate process in which vimentin filaments and FTCD integrate into chimeric fibers. Formation of the FTCD fibers is obligatorily coupled to vimentin assembly and does not occur in vim(-/-) cells. The FTCD-mediated regulation of vimentin IF is not a secondary effect of changes in the microtubule or the actin cytoskeletons, since those cytoskeletal systems appear unaffected by FTCD expression. The assembly of the FTCD/vimentin fibers causes a coordinate change in the structure of the Golgi complex and results in Golgi fragmentation into individual elements that are tethered to the FTCD/vimentin fibers. The observed interaction of Golgi elements with vimentin filaments and the ability of FTCD to specifically interacts with both Golgi membrane and vimentin filaments and promote their association suggest that FTCD might be a candidate protein integrating the Golgi compartment with the IF cytoskeleton.  相似文献   

15.
"Slip, sliding away": phospholipase D and the Golgi apparatus   总被引:6,自引:0,他引:6  
Phospholipase D enzymes (PLDs) constitute a family of phosphodiesterases that catalyze the hydrolysis of phosphatidylcholine (PtdCho) to generate choline and phosphatidic acid (PtdOH), a potent lipid signaling molecule implicated in numerous physiological processes. Mammalian PLDs have been localized to multiple organelles, including the nucleus, Golgi apparatus, lysosomes, secretory granules and plasma membrane. However, the detailed mechanisms that govern targeting of PLDs to different organelles, how their local activity is controlled or indeed the nature of PA effectors are not well understood. Here, we discuss recent observations on PLD localization to the Golgi apparatus and how members of this enzyme family might play a role in regulating the structure of this organelle.  相似文献   

16.
The organization of intra-Golgi trafficking and the nature of the transport intermediates involved (e.g., vesicles, tubules, or tubular continuities) remain incompletely understood. It was recently shown that successive cisternae in the Golgi stack are interconnected by membrane tubules that form during the arrival of transport carriers from the endoplasmic reticulum. Here, we examine the mechanisms of generation and the function of these tubules. In principle, tubule formation might depend on several protein- and/or lipid-based mechanisms. Among the latter, we have studied the phospholipase A2 (PLA2)-mediated generation of wedge-shaped lysolipids, with the resulting local positive membrane curvature. We show that the arrival of cargo at the Golgi complex induces the recruitment of Group IVA Ca2+-dependent, cytosolic PLA2 (cPLA2α) onto the Golgi complex itself, and that this cPLA2α is required for the formation of the traffic-dependent intercisternal tubules and for intra-Golgi transport. In contrast, silencing of cPLA2α has no inhibitory effects on peri-Golgi vesicles. These findings identify cPLA2α as the first component of the machinery that is responsible for the formation of intercisternal tubular continuities and support a role for these continuities in transport through the Golgi complex.  相似文献   

17.
Lipid modifications are essential in cellular sorting and trafficking inside cells. The role of phosphoinositides in trafficking between Golgi and endocytic/lysosomal compartments has been extensively explored and the kinases responsible for these lipid changes have been identified. In contrast, the mechanisms that mediate exit and recycling from lysosomes (Lys), considered for a long time as terminal compartments, are less understood. In this work, we identify a dynamic association of the lipid kinase PI4KIIIβ with Lys and unveil its regulatory function in lysosomal export and retrieval. We have found that absence of PI4KIIIβ leads to abnormal formation of tubular structures from the lysosomal surface and loss of lysosomal constituents through these tubules. We demonstrate that the kinase activity of PI4KIIIβ is necessary to prevent this unwanted lysosomal efflux under normal conditions, and to facilitate proper sorting when recycling of lysosomal material is needed, such as in the physiological context of lysosomal reformation after prolonged starvation.  相似文献   

18.
The Golgi complex of mammalian cells is composed of cisternal stacks that function in processing and sorting of membrane and luminal proteins during transport from the site of synthesis in the endoplasmic reticulum to lysosomes, secretory vacuoles, and the cell surface. Even though exceptions are found, the Golgi stacks are usually arranged as an interconnected network in the region around the centrosome, the major organizing center for cytoplasmic microtubules. A close relation thus exists between Golgi elements and microtubules (especially the stable subpopulation enriched in detyrosinated and acetylated tubulin). After drug-induced disruption of microtubules, the Golgi stacks are disconnected from each other, partly broken up, dispersed in the cytoplasm, and redistributed to endoplasmic reticulum exit sites. Despite this, intracellular protein traffic is only moderately disturbed. Following removal of the drugs, scattered Golgi elements move along reassembling microtubules back to the centrosomal region and reunite into a continuous system. The microtubule-dependent motor proteins cytoplasmic dynein and kinesin bind to Golgi membranes and have been implicated in vesicular transport to and from the Golgi complex. Microinjection of dynein heavy chain antibodies causes dispersal of the Golgi complex, and the Golgi complex of cells lacking cytoplasmic dynein is likewise spread throughout the cytoplasm. In a similar manner, kinesin antibodies have been found to inhibit Golgi-to-endoplasmic reticulum transport in brefeldin A-treated cells and scattering of Golgi elements along remaining microtubules in cells exposed to a low concentration of nocodazole. The molecular mechanisms in the interaction between microtubules and membranes are, however, incompletely understood. During mitosis, the Golgi complex is extensively reorganized in order to ensure an equal partitioning of this single-copy organelle between the daughter cells. Mitosis-promoting factor, a complex of cdc2 kinase and cyclin B, is a key regulator of this and other events in the induction of cell division. Cytoplasmic microtubules depolymerize in prophase and as a result thereof, the Golgi stacks become smaller, disengage from each other, and take up a perinuclear distribution. The mitotic spindle is thereafter put together, aligns the chromosomes in the metaphase plate, and eventually pulls the sister chromatids apart in anaphase. In parallel, the Golgi stacks are broken down into clusters of vesicles and tubules and movement of protein along the exocytic and endocytic pathways is inhibited. Using a cell-free system, it has been established that the fragmentation of the Golgi stacks is due to a continued budding of transport vesicles and a concomitant inhibition of the fusion of the vesicles with their target membranes. In telophase and after cytokinesis, a Golgi complex made up of interconnected cisternal stacks is recreated in each daughter cell and intracellular protein traffic is resumed. This restoration of a normal interphase morphology and function is dependent on reassembly of a radiating array of cytoplasmic microtubules along which vesicles can be carried and on reactivation of the machinery for membrane fusion.  相似文献   

19.
At the onset of mitosis, the Golgi apparatus, which consists of several cisternae, disperses throughout the cell to be partitioned into daughter cells. The molecular mechanisms of this process are now beginning to be understood. To investigate the biochemical requirements and kinetics of mitotic Golgi membrane dynamics in polarized cells, we have reconstituted the disassembly of the Golgi apparatus by introducing Xenopus egg extracts into permeabilized Mardin-Darby canine kidney (MDCK) cells. We used green fluorescence protein (GFP)-tagged galactosyltransferase-expressing MDCK cells to analyze the morphological changes of the Golgi membrane in the semi-intact system. Analyses by fluorescence and electron microscopies showed that the Golgi disassembly can be dissected into two elementary processes morphologically. In the first process, the perinuclear Golgi stacks break into punctate structures, intermediates, which are comprised of mini-stacks of cisternae associating with apical microtubule networks. In the second process, the structures fragment more thoroughly or substantially relocate to the ER. Our analyses further showed that cdc2 kinase and mitogen-activated protein kinase kinase (MAPKK = MEK) are differently involved in these two processes: the first process is mainly regulated by MEK and the second mainly by cdc2.  相似文献   

20.
Eukaryotic cells use a variety of strategies to inherit the Golgi apparatus. During vertebrate mitosis, the Golgi reorganizes dramatically in a process that seems to be driven by the reversible fragmentation of existing Golgi structures and the temporary redistribution of Golgi components to the endoplasmic reticulum. Several proteins that participate in vertebrate Golgi inheritance have been identified, but their detailed functions remain unknown. A comparison between vertebrates and other eukaryotes reveals common mechanisms of Golgi inheritance. In many cell types, Golgi stacks undergo fission early in mitosis. Some cells exhibit a further Golgi breakdown that is probably due to a mitotic inhibition of membrane traffic. In all eukaryotes examined, Golgi inheritance involves either the partitioning of pre-existing Golgi elements between the daughter cells or the emergence of new Golgi structures from the endoplasmic reticulum, or some combination of these two pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号