首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determinants of local abundance and range size in forest vascular plants   总被引:2,自引:0,他引:2  
Aim For a large set of forest herbs we tested: (1) whether there is a positive relationship between local abundance and geographical range size; (2) whether abundance or range size are affected by the niche breadths of species or niche availability; and (3) whether these are affected by the species life‐history traits. Location Northwestern Germany. Methods We measured abundance as mean density in 22 base‐rich deciduous forests and recorded range size as area of occupancy on four different spatial scales (local to national). Niche breadth was expressed in terms of habitat specificity (specialists, generalists) and of the ability to grow across a broad range of soil pH. The species’ pH niche position was used as a measure of the importance of habitat availability. As life‐history traits we used diaspore mass and number, plant height, seed longevity, lifespan/clonality, pollination mode, dispersal capability and flowering time. Results There were mainly no positive relationships between the abundance of species and their range size, as tested across species and across phylogenetically independent contrasts. Forest specialists were generally distributed less widely than generalists, but habitat specificity was not related to local abundance. Species with a broader pH niche breadth were more common, but the positive relationships between niche breadth and abundance or range size disappeared when accounting for sample size effects. Clonal species with few and heavy diaspores were most abundant, as well as early‐flowering species and those lacking dispersal structures. Local and regional range size were determined largely by habitat availability, while national range was positively affected by plant height and diaspore mass. Main conclusions Different processes determine the local density of species and their range size. Abundance within habitat patches appears to be related mainly to the species life histories, especially to their capacity for extensive clonal reproduction, whereas range size appears to be determined strongly by the availability of suitable habitat.  相似文献   

2.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

3.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

4.
Temperate calcareous grasslands are characterized by high levels of species richness at small spatial scales. Nevertheless, many species from a habitat‐specific regional species pool may be absent from local communities and represent the ‘dark diversity’ of these sites. Here we investigate dry calcareous grasslands in northern Europe to determine what proportion of the habitat‐specific species pool is realized at small scales (i.e. how the community completeness varies) and which mechanisms may be contributing to the relative sizes of the observed and dark diversity. We test whether the absence of particular species in potentially suitable grassland sites is a consequence of dispersal limitation and/or a low ability to tolerate stress (e.g. drought and grazing). We analysed a total of 1223 vegetation plots (1 × 1 m) from dry calcareous grasslands in Sweden, Estonia and western Russia. The species co‐occurrence approach was used to estimate the dark diversity for each plot. We calculated the maximum dispersal distance for each of the 291 species in our dataset by using simple plant traits (dispersal syndrome, growth form and seed characteristics). Large seed size was used as proxy for small seed number; tall plant height and low S‐strategy type scores were used to characterise low stress‐tolerance. Levels of small‐scale community completeness were relatively low (more species were absent than present) and varied between the grasslands in different geographic areas. Species in the dark diversity were generally characterized by shorter dispersal distances and greater seed weight (fewer seeds) than species in the observed diversity. Species within the dark diversity were generally taller and had a lower tolerance of stressful conditions. We conclude that, even if temperate grasslands have high levels of small‐scale plant diversity, the majority of potentially suitable species in the regional species pool may be absent as a result of dispersal limitation and low stress‐tolerance.  相似文献   

5.
In suburban regions, vacant lots potentially offer significant opportunities for biodiversity conservation. Recently, in Japan, due to an economic recession, some previously developed lands have become vacant. Little is known, however, about the legacy of earlier earthmoving, which involves topsoil removal and ground leveling before residential construction, on plant community composition in such vacant lots. To understand (dis)assembly processes in vacant lots, we studied 24 grasslands in a suburban region in Japan: 12 grasslands that had experienced earthmoving and 12 that had not. We surveyed plant community composition and species richness, and clarified compositional turnover (replacement of species) and nestedness (nonrandom species loss) by distance‐based β‐diversities, which were summarized by PCoA analysis. We used piecewise structural equation modeling to examine the effects of soil properties, mowing frequency, past and present habitat connectivities on compositional changes. As a result, past earthmoving, mowing frequency, soil properties, and past habitat connectivity were found to be the drivers of compositional turnover. In particular, we found legacy effects of earthmoving: earthmoving promoted turnover from native grassland species to weeds in arable lands or roadside by altering soil properties. Mowing frequency also promoted the same turnover, implying that extensive rather than intensive mowing can modify the negative legacy effects and maintain grassland species. Decrease in present habitat connectivity marginally enhanced nonrandom loss of native grassland species (nestedness). Present habitat connectivity had a positive effect on species richness, highlighting the important roles of contemporary dispersal. Our study demonstrates that community assembly is a result of multiple processes differing in spatial and temporal scales. We suggest that extensive mowing at local scale, as well as giving a high conservation priority to grasslands with high habitat connectivity at regional scale, is the promising actions to maintain endangered native grassland species in suburban landscapes with negative legacy effects of earthmoving.  相似文献   

6.
Habitat fragmentation contributes to the decline of plant species by decreasing gene flow among populations. Restoring connectivity among habitat patches is therefore a major issue for plant conservation. However, deciding where to focus restoration efforts requires identifying suitable dispersers for each target plant species. We collected data from the literature on wild and domesticated ungulates, known to be effective seed dispersers, and on the plants they dispersed in Europe via epi‐ and/or endozoochory. We performed a systematic literature review to identify plant and animal traits relevant for seed dispersal. We first modeled the relationships between epi‐ or endozoochory and a priori selected plant traits (diaspore releasing height, length, shape and morphology, and habitat openness). The differences we underlined between the two dispersal mechanisms justified splitting our analyses accordingly. Then, for each dispersal mechanism, we asked whether basic plant traits could be used to predict specific traits of ungulates as endozoochorous or epizoochorous seed dispersers. We modeled the relationships between a priori selected ungulate traits for epizoochory (habitat openness, shoulder height, hair curliness, and hair length) and for endozoochory (habitat openness, body mass, feeding type and digestive system) and plant traits. Plant habitat openness and diaspore morphology were the predictors that most often explained differences among ungulates for epizoochory, whereas plant habitat openness and diaspore releasing height most often explained differences for endozoochory. Our trait‐based predictive models can help improve our ability to propose more precise management decisions for the conservation of plant populations worldwide by taking into account ungulate dispersers.  相似文献   

7.
One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait‐occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress‐tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress‐tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale‐dependency of trait‐abundance relationships.  相似文献   

8.
Due to ubiquitous eutrophication and fragmentation, many plant species are actually threatened in Europe. Most ecosystems face an overall nutrient input leading to changes in species composition. Fragmentation is effectively influencing species survival. We investigate if two different measures of species performance of 91 calcareous grassland species–rate of decline and rarity—are related to comparable traits and hence processes. On the one hand we expected that species rate of decline is mainly determined by the processes of eutrophication and fragmentation. On the other hand we hypothesized that the importance of site characteristics may overwhelm the effect of eutrophication and fragmentation for species rarity. Hence, we compared persistence traits responding to eutrophication, dispersal traits being related to fragmentation and ecological site factors for decreasing and increasing species and for rare and common species. The results suggest that increasing species had better means of long-distance dispersal and were more competitive than decreasing species. In contrast, there were hardly any differences in traits between rare and common species, but site characteristics were related to species rarity. Rare species were in the main those with ecological preferences for warm, dry, light and nutrient poor conditions. This study may represent a basis for the assessment of plant species threat. Applying the deduced knowledge about the life history of decreasing versus increasing species to habitat-scale approaches it is possible to predict which species may become threatened in the future simply from the combination of their trait values. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Adaptive plasticity is expected to be important when the grain of environmental variation is encompassed in offspring dispersal distance. We investigated patterns of local adaptation, selection and plasticity in an association of plant morphology with fine-scale habitat shifts from oak canopy understory to adjacent grassland habitat in Claytonia perfoliata. Populations from beneath the canopy of oak trees were >90 % broad leaved and large seeded, while plants from adjacent grassland habitat were >90 % linear-leaved and small seeded. In a 2-year study, we used reciprocal transplants and phenotypic selection analysis to investigate local adaptation, selection, plasticity and maternal effects in this trait-environment association. Transgenerational effects were studied by planting offspring of inbred maternal families grown in both environments across the same environments in the second year. Reciprocal transplants revealed local adaptation to habitat type: broad-leaved forms had higher fitness in oak understory and linear-leaved plants had higher fitness in open grassland habitat. Phenotypic selection analyses indicated selection for narrower leaves and lower SLA in open habitat, and selection for broad leaves and intermediate values of SLA in understory. Both plant morphs exhibited plastic responses in traits in the same direction as selection on traits (narrower leaves and lower SLA in open habitat) suggesting that plasticity is adaptive. We detected an adaptive transgenerational effect in which maternal environment influenced offspring fitness; offspring of grassland-reared plants had higher fitness than understory-reared plants when grown in grassland. We did not detect costs of plasticity, but did find a positive association between leaf shape plasticity and fitness in linear-leaved plants in grassland habitat. Together, these findings indicate that fixed differences in trait values corresponding to selection across habitat contribute to local adaptation, but that plasticity and maternal environmental effects may be favored through promotion of survival across heterogeneous environments.  相似文献   

10.
Long‐distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long‐distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species’ dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed dispersal model to calculate dispersal kernels from dispersal traits. We used data on 190 plant species and calculated their regional survival in two ways, using species distribution data from 36,800 1 km2‐grid cells and 10,754 small plots covering the Netherlands during the largest part of the 20th century. We carried out correlation and stepwise multiple regression analyses to quantify the importance of long‐distance dispersal, expressed as the 99‐percentile dispersal distance of the dispersal kernels, relative to the importance of median‐distance dispersal and other plant traits that are likely to contribute to the explanation of regional survival: plant longevity (annual, biennial, perennial), seed longevity, and plant nutrient requirement. Results show that long‐distance dispersal plays a role in determining regional survival, and is more important than median‐distance dispersal and plant longevity. However, long‐distance dispersal by wind explains only 1–3% of the variation in regional survival between species and is equally important as seed longevity and much less important than nutrient requirement. In changing landscapes such as in the Netherlands, where large‐scale eutrophication and habitat destruction took place in the 20th century, plant traits indicating ability to grow under the changed, increasingly nutrient‐rich conditions turn out to be much more important for regional survival than seed dispersal.  相似文献   

11.
Recent studies have shown significant impacts of past landscapes on present distributions of species, and discussed the existence of an extinction debt. Understanding of the processes building an extinction debt is fundamentally important for explaining present and future diversity patterns of species in fragmented landscapes. Few empirical studies, however, have examined the responses of different plant functional groups (PFGs) to historical landscape changes. We aimed to reveal PFG-based differences in species’ persistence by focusing on their vegetative, reproductive, and dispersal traits. We examined whether the present distributions of PFGs of grassland species in the edges of remnant woodlands established on former semi-natural grasslands are related to the past surrounding landscapes at different time periods and spatial scales. The effects of past landscapes varied significantly among the PFGs. Richness of short, early flowering forbs and tall, late-flowering, wind-dispersed forbs showed significant positive relationships with the surrounding habitat proportions more than 50 years ago (the 1950s) and at wide spatial scales (more than 1 km2). Richness of tall, late-flowering forbs with unassisted and other types of dispersal mechanisms showed positive relationships with the surrounding habitat proportions in recent times (the 1970s) and at smaller spatial scales (0.25 km2). Our results suggested that plant growth form, flowering season and dispersal ability—with additional information on seed bank persistence—can be good indicators for identifying species’ specific sensitivity to surrounding habitat loss. Trait-based approaches can be useful for understanding present and future distributions of grassland species with different persistence strategies in human-modified landscapes.  相似文献   

12.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

13.
Abstract. We analysed the relationship between seed traits (weight, shape and dispersal structures) and the abundance and habitat segregation of Mediterranean grassland species. To take into account possible correlations with other plant traits, the study also includes 5 vegetative traits (growth form, plant longevity, clonality, onset of flowering and plant size) of commonly accepted functional importance. Data were recorded for 85 species from dehesa grasslands in central Spain. Species abundance was measured in upper (dry and less productive, high stress) and lower (moist and more productive, low stress) slope zones in the same area. Habitat segregation was estimated using an index based on the relative frequencies of species in upper and lower slope zones. Multiple regression models were fitted using species, as well as phylogenetically independent contrasts, as data points. Annual small‐seeded species without specialised dispersal structures are over‐represented in dehesa grasslands. Abundance was negatively related to seed weight in upper slope zones. None of the recorded plant traits were related to abundance in the lower slope zones. Habitat segregation was mainly related to seed weight, but also to some vegetative traits. Annual, early flowering and small‐seeded species were relatively more abundant in the upper than the lower slope zones. This pattern is independent of phylogeny. Our results suggest that in dry Mediterranean grasslands, abundance of many species is determined by dispersal (production of numerous small seeds) rather than by competitive ability.  相似文献   

14.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   

15.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

16.
Persistence of restored populations depends on growth, reproduction, dispersal, local adaptation, and a suitable landscape pattern to foster metapopulation dynamics. Although the negative effects of habitat fragmentation on plant population dynamics are well understood, particularly in grasslands, the population traits that control grassland restoration are less known. We reviewed the use of population traits for evaluating grassland restoration success based on 141 publications (1986–2015). The results demonstrated that population demography was relatively well‐assessed but detailed studies providing information on key stages of the life cycle were lacking despite their importance in determining population viability. Vegetative and generative performances have been thoroughly investigated, notably the components of plant fitness, such as reproductive output, while genetic and spatial population structures were largely ignored. More work on the population effects of ecological restoration would be welcomed, particularly with a focus on population genetics. Targeted species were principally common and dominant natives, or invasive plants while rare or threatened species were poorly considered. Evaluation of ecological restoration should be conducted at different scales of ecological complexity, but so far, communities and ecosystems are over represented, and more focus should be directed towards a population approach as population traits are essential indicators of restoration success.  相似文献   

17.
Human impacts are blamed for range contraction in several animal species worldwide. Remarkably, carnivores and particularly top predators are threatened by humans despite their key role in maintaining ecosystem balance and functions. Conservation strategies to allow human-carnivore coexistence are urgently needed. These strategies must be built on evidence and driven by knowledge of population risk at a broad scale. However, knowledge on wide distributed species is often based on regional expert opinions in which uncertainty is not quantifiable, making data incomparable across regions. Here we develop a method to assess the endangerment status of a species based on its range contractions and the main threats using the jaguar Panthera onca as model. The use of GLM with the main intrinsic and extrinsic drivers of jaguar extinction allowed us to assess the endangerment status at continental and population scale. We found this method to be a valuable tool to obtain a broad picture of human-induced endangerment in animal species. Intrinsic traits (summarized in the demographic contraction theory) and anthropic traits (based on agriculture, cattle and human densities) explained jaguar extinction highlighting the particular importance of livestock activity. Our results suggest that livestock ranching has a pervasive effect on the species likely due to habitat loss combined with retaliatory hunting. We highlight the need to rethink policies, practice and law enforcement in relation to livestock and suggest the development of action plans based in local evidence in those countries where endangered populations have been detected. We also recommend involving and encouraging land owners and private companies in the conservation of private lands that comprise much of the endangered jaguar range.  相似文献   

18.
Habitat fragmentation is one of the most important causes for the decline of plant species. However, plants differing in phylogeny, habitat requirements and biology are likely to respond differently to habitat fragmentation. We ask whether case studies on the effects of habitat fragmentation conducted so far allow generalizations about its effects on the fitness and genetic diversity of populations of endangered plant species. We compared the characteristics of plant species endangered in Germany whose sensitivity to habitat fragmentation had been studied with those of the endangered species that had not been studied. We found strong discrepancies between the two groups with regard to their taxonomy and traits relevant to their sensitivity to habitat fragmentation. Monocots, graminoids, clonal, abiotically pollinated and self compatible species were underrepresented among the studied species, and most study species were from a few habitat types, in particular grasslands. We conclude that our current knowledge of the effects of habitat fragmentation on plant populations is not sufficient to provide widely applicable guidelines for species management. The selection of species studied so far has been biased toward species from certain habitats and species exhibiting traits that probably make them vulnerable to habitat fragmentation. Future studies should include community-wide approaches in different habitats, e.g. re-visitation studies in which the species pool is assessed at different time intervals, and population-biological studies of species from a wide range of habitats, and of different life forms and growth strategies. A more representative picture of the effects of habitat fragmentation would allow a better assessment of threats and more specific recommendations for optimally managing populations of endangered plants.  相似文献   

19.
Aims For plants to establish in a local community from a pool of possible colonizers from the region, it must pass through a series of filters. Which of the filters is most important in this process has been much debated. In this study, we explored how species are filtered from the regional species pool into local communities. The aim was to determine if differences in species abundance and functional traits could explain which species from the regional species pool establish at the local scale and if the filtering differed between grassland communities.Methods This study took place in a cultivated landscape in southeastern Sweden. We estimated plant species abundance in 12 ex-arable field sites and 8 adjacent seminatural grassland sites and in a 100-m radius around the center of each site. We used Monte Carlo simulations to examine if species abundance and functional traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) controlled the filtering of species from the regional pool into local communities.Important findings On average, only 28% of species found in the regional pool established in the ex-arable field sites and 45% in the seminatural grassland sites, indicating that the size of the regional species pool was not limiting local richness. For both grassland types, species abundance in the regional pool was positively correlated with species occurrence at the local scale. We found evidence for both species interaction filtering and dispersal limitation influencing the local assembly. Both local and regional processes were thus influencing the filtering of species from the regional species pool into local communities. In addition, the age of the communities influenced species filtering, indicating that community assembly and the importance of different filters in that process change over succession.  相似文献   

20.
Dispersal limitation and long-term persistence are known to delay plant species’ responses to habitat fragmentation, but it is still unclear to what extent landscape history may explain the distribution of dispersal traits in present-day plant communities. We used quantitative data on long-distance seed dispersal potential by wind and grazing cattle (epi- and endozoochory), and on persistence (adult plant longevity and seed bank persistence) to quantify the linkages between dispersal and persistence traits in grassland plant communities and current and past landscape configurations. The long-distance dispersal potential of present-day communities was positively associated with the amounts of grassland in the historical (1835, 1938) landscape, and with a long continuity of grazing management—but was not associated with the properties of the current landscape. The study emphasises the role of history as a determinant of the dispersal potential of present-day grassland plant communities. The importance of long-distance dispersal processes has declined in the increasingly fragmented modern landscape, and long-term persistent species are expected to play a more dominant role in grassland communities in the future. However, even within highly fragmented landscapes, long-distance dispersed species may persist locally—delaying the repayment of the extinction debt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号