首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.  相似文献   

2.
Progress in identification of plant ion channels and development of electrophysiological analyses in heterologous expression systems and in planta, in combination with reverse genetic approaches, are providing the possibility of associating molecular entities with physiological functions. Recently, the first attempts to determine in vivo functions using knockout mutants demonstrated the roles of root ion channels. The search for proteins interacting with such channels leads to an even more complex view of the concerted action in protein networks.  相似文献   

3.
Obestatin: its physicochemical characteristics and physiological functions   总被引:1,自引:0,他引:1  
Tang SQ  Jiang QY  Zhang YL  Zhu XT  Shu G  Gao P  Feng DY  Wang XQ  Dong XY 《Peptides》2008,29(4):639-645
Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene with ghrelin, was initially reported to reduce food intake, body weight gain, gastric emptying and suppress intestinal motility through an interaction with the orphan receptor GPR39. However, recently reports have shown that above findings had been questioned by several groups. Further studies explained that obestatin was involved in inhibiting thirst and anxiety, improving memory, regulating sleep, affecting cell proliferation, and increasing the secretion of pancreatic juice enzymes. We also identified that obestatin could stimulate piglet liver and adipose cell proliferation, and inhibit the secretion of IGF-I. According to the controversy over the effects and the cognate ligand of obestatin, here we provide the latest review on the structure, distribution and physiological functions of obestatin.  相似文献   

4.
Difructose anhydrides (DFAs) are the smallest cyclic disaccharides consisting of two fructose residues, and are expected to have novel physiological functions from their unique structures and properties. For mass-production of alpha-D-fructofuranose-beta-D-fructofuranose-2',1:2,3'-dianhydride (DFA III) and beta-D-fructofuranose-beta-D-fructofuranose-2',6:2,6'-dianhydride (DFA IV), Arthrobacter sp. H65-7 and A. nicotinovorans GS-9 were selected as the best producers of inulase II, which produced DFA III from inulin and LFTase, which produced DFA IV from levan. The enzymes were purified and their genes were subsequently cloned and expressed in E. coli at higher levels than in the original bacteria. Thus, it became possible to provide a large amount of DFA III and DFA IV for evaluating their physiological properties. DFA III and DFA IV have half the sweetness of sucrose, but cannot be digested by the digestive system of rats. Their use by the intestinal microorganisms was observed in vivo even though their assimilation could not be detected in vitro. This implied that they were degraded by an unknown system in the intestine. It was also found that they affected calcium absorption mainly in the small intestine through mechanisms different from the known stimulants such as fructooligosaccharides and raffinose.  相似文献   

5.
Mitochondrial division has emerged as a key mechanism for this essential organelle to maintain its structural integrity, intracellular distribution, and functional competence. An evolutionarily conserved dynamin-related GTPase, Dnm1p/Drp1, interacts with other proteins to form the core machinery involved in mitochondrial division. We summarize recent progress in understanding how the division machinery assembles onto mitochondria and how mitochondrial division contributes to cellular physiology and human diseases.  相似文献   

6.
In youth, most physiological functions have generous spare capacity. Even in health, however, increasing age is characterized by progressive erosion of these ''safety margins''. Examples include the decline of bone mass (towards a threshold for likelihood of fracture), of glomerular filtration rate (towards a threshold for susceptibility to clinical renal failure), of renal tubular function (towards a threshold for clinically important susceptibility to dehydration), of hepatic function (towards a threshold for accumulation following conventional ''young adult'' doses of common medications), or of lower limb explosive power (towards thresholds for impaired functional mobility). Increasing age is also characterized by a rising prevalence of chronic pathologies, complicating attempts to determine the rate or the mechanism of the age-related decline in a physiological function. Nevertheless, it is clear that in many organs the loss of function is largely attributable to the loss of functioning cells, even in the absence of overt disease. This apparently fundamental aspect of ageing remains poorly understood.  相似文献   

7.
Wolfner MF 《Heredity》2002,88(2):85-93
During mating, males transfer seminal proteins and peptides, along with sperm, to their mates. In Drosophila melanogaster, seminal proteins made in the male's accessory gland stimulate females' egg production and ovulation, reduce their receptivity to mating, mediate sperm storage, cause part of the survival cost of mating to females, and may protect reproductive tracts or gametes from microbial attack. The physiological functions of these proteins indicate that males provide their mates with molecules that initiate important reproductive responses in females. A new comprehensive EST screen, in conjunction with earlier screens, has identified approximately 90% of the predicted secreted accessory gland proteins (Acps). Most Acps are novel proteins and many appear to be secreted peptides or prohormones. Acps also include modification enzymes such as proteases and their inhibitors, and lipases. An apparent prohormonal Acp, ovulin (Acp26Aa) stimulates ovulation in mated Drosophila females. Another male-derived protein, the large glycoprotein Acp36DE, is needed for sperm storage in the mated female and through this action can also affect sperm precedence, indirectly. A third seminal protein, the protease inhibitor Acp62F, is a candidate for contributing to the survival cost of mating, given its toxicity in ectopic expression assays. That male-derived molecules manipulate females in these ways can result in a molecular conflict between the sexes that can drive the rapid evolution of Acps. Supporting this hypothesis, an unusually high fraction of Acps show signs consistent with their being targets of positive Darwinian selection.  相似文献   

8.
9.
Carnitine (4-N-trimethylammonium-3-hydroxybutyric acid), a compound necessary for a transfer of fatty acids for their oxidation within the cell, accumulates in brain although β-oxidation of fatty acids is very low in neurons. Carnitine accumulates to lower extent in the brain than in peripheral tissues and the mechanism of its transport through the blood–brain barrier is discussed, with the involvement of two transporters, OCTN2 and B0,+ being presented. A limitation by the blood–brain barrier of carnitine supply for the brain and the mechanism of its transport to neural cells by a protein belonging to neurotransmitters' transporters superfamily is further discussed.

Due to the beneficial effects of administration of acetylcarnitine in case of patients with dementia, the role of this acylcarnitine is presented in the context of neuronal cell metabolism and the role of acetylcarnitine in the synthesis of acetylcholine. The roles of long-chain acyl derivatives of carnitine, in particular palmitoylcarnitine, responsible for interaction with the membranes, lipids acylation and specific interactions with proteins have been summarized. Stimulation of protein palmitoylation and a possibility of changing the acylation status of G proteins is described, as well as interaction of palmitoylcarnitine with protein kinase C. Diminished interaction of the isoform δ of this kinase with GAP-43 (B-50, neuromodulin), whose expression increases upon accumulation of either carnitine or palmitoylcarnitine points to a possible regulation of differentiation by these compounds and their role in neuroregeneration.  相似文献   


10.
11.
12.
13.
Miyagi T  Yamaguchi K 《Glycobiology》2012,22(7):880-896
Sialic acids are terminal acidic monosaccharides, which influence the chemical and biological features of glycoconjugates. Their removal catalyzed by a sialidase modulates various biological processes through change in conformation and creation or loss of binding sites of functional molecules. Sialidases exist widely in vertebrates and also in a variety of microorganisms. Recent research on mammalian sialidases has provided evidence for great importance of these enzymes in various cellular functions, including lysosomal catabolism, whereas microbial sialidases appear to play roles limited to nutrition and pathogenesis. Four types of mammalian sialidases have been identified and characterized to date, designated as NEU1, NEU2, NEU3 and NEU4. They are encoded by different genes and differ in major subcellular localization and enzymatic properties including substrate specificity, and each has been found to play a unique role depending on its particular properties. This review is an attempt to concisely summarize current knowledge concerning mammalian sialidases, with a special focus on their properties and physiological and pathological roles in cellular functions.  相似文献   

14.
15.
Iron-sulfur proteins occur in all life forms. Ferredoxins and Rieske proteins each contain a (2Fe2S) cluster whereas photosystem I (PSI) contains three (4Fe4S) clusters. Essential enzymes such as sulfite reductase, nitrite reductase, nitrogenase, glutamate synthase, aconitase, succinate dehydrogenase, ferredoxin/thioredoxin reductase, as well as many other vital proteins, each contain a (4Fe4S) cluster. Iron-sulfur clusters are formed enzymatically from cysteinyl-sulfur and ferritin-sequestered iron. Many iron-sulfur clusters are inactivated by O2 and/or reactive oxygen species (ROS) such as O2•−. Perhaps 0.1 % of the electrons passing through either the mitochondrial electron transport chain or PSI result in the formation of O2•−. Many plant stresses increase ROS formation, which subsequently may perturb iron-sulfur clusters. Plants have evolved three different superoxide dismutases (SODs) to control the internal concentrations of harmful ROS. Possible roles of functional and non-functional iron-sulfur clusters in the coordination of metabolic activities of stressed and non-stressed plants are discussed.  相似文献   

16.
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.  相似文献   

17.
18.
19.
Plant aquaporins: novel functions and regulation properties   总被引:2,自引:0,他引:2  
Maurel C 《FEBS letters》2007,581(12):2227-2236
Aquaporins are water channel proteins of intracellular and plasma membranes that play a crucial role in plant water relations. The present review focuses on the most recent findings concerning the molecular and cellular properties of plant aquaporins. The mechanisms of transport selectivity and gating (i.e. pore opening and closing) have recently been described, based on aquaporin structures at atomic resolution. Novel dynamic aspects of aquaporin subcellular localisation have been uncovered. Also, some aquaporin isoforms can transport, besides water, physiologically important molecules such as CO(2), H(2)O(2), boron or silicon. Thus, aquaporins are involved in many great functions of plants, including nutrient acquisition, carbon fixation, cell signalling and stress responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号