首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science–practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision‐making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science–practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science–practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision‐making. We based our review on 1563 sentences describing causes of the science–practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process‐based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science–practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one‐way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision‐makers should contribute to support practice, perceiving a two‐way knowledge flow between science and practice through joint knowledge‐production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision‐makers) are shared with other disciplines, while others seem specific to Ecology and Conservation (e.g. inadequate research scales). All identified causes require one of three general types of solutions, depending on whether the causal factor can (e.g. inadequate research questions) or cannot (e.g. scientific uncertainty) be changed, or if misconceptions (e.g. undervaluing abstract knowledge) should be solved. The unchanged predominance of the one‐way perspective over time may be associated with the prestige of evidence‐based conservation and suggests that debates in Ecology and Conservation lag behind trends in other disciplines towards bidirectional views ascribing larger roles to decision‐makers. In turn, the two‐way perspective seems primarily restricted to research traditions historically isolated from mainstream conservation biology. All perspectives represented superficial views of decision‐making by not accounting for limits to human rationality, complexity of decision‐making contexts, fuzzy science–practice boundaries, ambiguity brought about by science, and different types of knowledge use. However, joint knowledge‐production processes from the two‐way perspective can potentially allow for democratic decision‐making processes, explicit discussions of values and multiple types of science use. To broaden our understanding of the interface and foster productive science–practice linkages, we argue for dialogue among different research traditions within Ecology and Conservation, joint knowledge‐production processes between scientists and decision‐makers and interdisciplinarity across Ecology, Conservation and Political Science in both research and education.  相似文献   

2.
Loving science and nature and being a scientist can be very different, yet the two are so intertwined in a scientist''s life that you will certainly experience both aspects. This essay presents my perspective on how, as one who loves science and nature, I came to fall in love with centrosome behavior in stem cells and how I came to run a lab as a scientist. When I started, there was a big gap between my love for science and my experience as a scientist. I filled this gap by learning a “laid-back confidence.”Before the beauty of cell biology (or whatever you love), who you are (i.e., your age, gender, or race) is immaterial. Yet history shows that the ease with which you can pursue science is influenced by who you are. This has certainly been my experience. The key is to find a way to fill in the gap between who you are and what you are (i.e., a scientist), a goal in which we must all support each other. It is my hope that this essay will convey something helpful to those who are at early stages of their career and might be encountering obstacles because of who they are.  相似文献   

3.
Demand for restoration of resilient, self‐sustaining, and biodiverse natural ecosystems as a conservation measure is increasing globally; however, restoration efforts frequently fail to meet standards appropriate for this objective. Achieving these standards requires management underpinned by input from diverse scientific disciplines including ecology, biotechnology, engineering, soil science, ecophysiology, and genetics. Despite increasing restoration research activity, a gap between the immediate needs of restoration practitioners and the outputs of restoration science often limits the effectiveness of restoration programs. Regrettably, studies often fail to identify the practical issues most critical for restoration success. We propose that part of this oversight may result from the absence of a considered statement of the necessary practical restoration science questions. Here we develop a comprehensive framework of the research required to bridge this gap and guide effective restoration. We structure questions in five themes: (1) setting targets and planning for success, (2) sourcing biological material, (3) optimizing establishment, (4) facilitating growth and survival, and (5) restoring resilience, sustainability, and landscape integration. This framework will assist restoration practitioners and scientists to identify knowledge gaps and develop strategic research focused on applied outcomes. The breadth of questions highlights the importance of cross‐discipline collaboration among restoration scientists, and while the program is broad, successful restoration projects have typically invested in many or most of these themes. Achieving restoration ecology's goal of averting biodiversity losses is a vast challenge: investment in appropriate science is urgently needed for ecological restoration to fulfill its potential and meet demand as a conservation tool.  相似文献   

4.
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well‐being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human‐centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.  相似文献   

5.
王炜晔  翟大业  刘金龙 《生态学报》2024,44(13):5459-5475
保护科学前沿研究重视克服单一学科的局限而向超越自然科学和社会科学跨学科交叉融合转型。基于世界自然保护联盟-世界保护区委员会(IUCN-WCPA)自然保护地管理有效性框架,从规划制定、执行和评估三个方面系统梳理了我国保护科学的研究进展,分析了保护自然科学和社会科学在研究内容、方法和视角等方面的差异,识别出潜在的跨学科综合研究领域。结果表明,我国保护自然科学与社会科学研究大多相互独立、缺乏融合协作,少有的跨学科研究在整体性、系统性、兼容性、深入性和规范性上有待提高。自然科学家在介入社会科学研究时缺乏对现实制度的科学理解,所提出的保护政策和行动建议偏向理想主义,阻碍保护科学跨学科知识生产;社会科学家则缺乏自然科学方法和数据的知识积累,所提出的政策和行动建议脱离事实和证据,偏向主观主义,不利于保护科学知识进步。为此,构建了基于自然保护地适应性管理逻辑下的保护科学跨学科整合框架,以推动保护科学共同话语的形成,实现社会与生态的耦合协调发展。  相似文献   

6.
This paper considers the context for science contributing to policy development and explores some critical issues that should inform science advocacy and influence with policy makers. The paper argues that the key challenges are at least as much in educating conservation scientists and science communicators about society and policy making as they are in educating society and policy makers about science. The importance of developing processes to ensure that scientists and science communicators invest in the development of relationships based on respect and understanding of their audience in both communities and amongst policy makers provides a critical first step. The objectives of the Global Strategy for Plant Conservation acknowledge the importance of developing the capacities and public engagement necessary to implement the Strategy, including knowledge transfer and community capacity building. However, the development of targets to equip institutions and plant conservation professionals to explicitly address the barriers to influencing policy development through knowledge transfer and integration require further consideration.  相似文献   

7.
Developing and strengthening a more mutualistic relationship between the science of restoration ecology and the practice of ecological restoration has been a central but elusive goal of SERI since its inaugural meeting in 1989. We surveyed the delegates to the 2009 SERI World Conference to learn more about their perceptions of and ideas for improving restoration science, practice, and scientist/practitioner relationships. The respondents' assessments of restoration practice were less optimistic than their assessments of restoration science. Only 26% believed that scientist/practitioner relationships were “generally mutually beneficial and supportive of each other,” and the “science–practice gap” was the second and third most frequently cited category of factors limiting the science and practice of restoration, respectively (“insufficient funding” was first in both cases). Although few faulted practitioners for ignoring available science, many criticized scientists for ignoring the pressing needs of practitioners and/or failing to effectively communicate their work to nonscientists. Most of the suggestions for bridging the gap between restoration science and practice focused on (1) developing the necessary political support for more funding of restoration science, practice, and outreach; and (2) creating alternative research paradigms to both facilitate on‐the‐ground projects and promote more mutualistic exchanges between scientists and practitioners. We suggest that one way to implement these recommendations is to create a “Restoration Extension Service” modeled after the United States Department of Agriculture's Cooperative Extension Service. We also recommend more events that bring together a fuller spectrum of restoration scientists, practitioners, and relevant stakeholders.  相似文献   

8.
Conservation scientists are increasingly recognising the value of communicating policy-relevant knowledge to policy-makers. Whilst considerable progress has been made in offering practical advice for scientists seeking to engage more closely with decision-makers, researchers have provided few tangible examples to learn from. This paper uses an English case study, but draws out important high-level messages relevant to conservation scientists worldwide. The case study looks at how the Lawton Review presented knowledge persuasively about the suitability of England’s ecological network to deal with future pressures. Through skilful framing of rigorous scientific knowledge it was able to make a significant impact on government policy. Impact was achieved through: (1) selecting politically salient frames through which to communicate; (2) using clear, accessible language, and; (3) conducting rigorous science using an authoritative team of experts. Although its publication coincided with a favourable policy window, the Lawton Review seized on this opportunity to communicate a rigorously argued, persuasive and practical conservation message; in other words, it performed ‘honest advocacy’. Thus, whilst it remains important to conduct scientific research with technical rigour, conservation scientists could also benefit from identifying salient frames for conservation and communicating clearly.  相似文献   

9.
In the conservation of forests and protected areas, a gap lies between scientific knowledge and the management decisions made. From our perspective as scientists studying a national park, who deal daily with both research and administration, we discuss the general reasons for this gap. We provide examples (saproxylic beetles and Norway spruce genetics) to demonstrate the dilemma of practitioners who aim at basing their decisions on evidence. From our experience, the approach of problem solving is crucial, yet in many cases, the bidirectional bridge between science and application is poorly established. We specifically urge governments to organize nation-wide species distribution data; scientists to support the conservation community with new functional approaches, also in combination with Red Lists to identify diversity hotspots and major threats; stakeholders to identify land-use alternatives for scientists to study; state research institutes to increase the proportion of scientists; scientists and governmental authorities to regularly summarize scientific results and conclusions for practitioners; and agencies should foster incentives for scientists to deal with conservation efforts.  相似文献   

10.
Adherence to these principles will not guarantee success, but the testimony of many famous scientists supports the hypothesis that these guidelines can significantly (p less than .05, Wilcoxon unpaired X-test run at pH 5.6) increase your chances of achieving recognition, acquiring wealth, and ultimately being known as a successful scientist. At the very least, they should prevent you from falling too far outside the boundaries of "normal" science where you could easily be branded for life as a troublemaker or heretic.  相似文献   

11.
An ontological crisis? A review of large felid conservation in India   总被引:1,自引:0,他引:1  
The need for a solid knowledge base to inform conservation activity is now universally recognised. We critically scrutinised the scientific knowledge of large felids in India located in peer-reviewed research papers to assess the information available to make landscape-level management decisions that aid conservation, which is a stated goal of both the Indian government and the international community. We found two striking patterns: the biological sciences dominate in the published literature, and nearly all the research has been carried out in protected areas, though a substantial number of large felids also live outside protected areas. We argue that these patterns are not incidental, but the result of the dualistic ontology of science that uses processes of ‘purification’ and ‘translation’ to fit complex realities into disciplinary prerogatives organised around creating dichotomies (like nature–culture). In addition, since this body of scientific knowledge locates large felids in ‘pure’ biological landscapes, there is little or no insight from multi-use landscapes. These findings, we believe, highlight important knowledge gaps in our present research-based knowledge of large felids in India, which urgently need to be addressed if progress is to be made in conservation.  相似文献   

12.
The Wallacean deficit continues to be a challenge to species distribution modelling. Although some authors have suggested that data collected by citizen scientists can be relevant for a better understanding of biodiversity, to our knowledge, no work has quantitatively tested the equivalence between scientific and citizen science data. Here, we investigate the hypothesis that data collected by citizen scientists can be equivalent to data collected by professional scientists when generating species spatial distribution models. For 42 bird species in the Cerrado region we generated and compared species distribution models based on three data sources: (1) scientific data, (2) citizen science data and (3) sample size corrected citizen science data. To test our hypothesis, we compared the equivalence of these datasets. We rejected the hypothesis of equivalence for about one-third (38%) of the evaluated species, revealing that, for most of the species considered, the models generated were equivalent irrespective of the data set used. The distances between centroids of the models that were equivalent were on average smaller than the distances between non-equivalent models. Also, the direction of change in the models showed no pattern, with no trend towards more populated regions. Our results show that the use of data collected by citizen scientists can be an ally in filling the Wallacean deficit gap. In fact, the lack of use of this wide range of data collected by citizen scientists seems to be an unjustified caution. We indicate the potential of using citizen science data for modelling the distribution of species, mainly due to the large set of data collected, which is impracticable for scientists alone to collect. Conservation measures will be favoured by the union of professional and amateur data, aiming for a better understanding of species distribution and, consequently, biodiversity conservation.  相似文献   

13.
Citizen science Citizen science is performed on a honorary basis. Citizen scientists (”Citizen Science proper“) have no professional employment in the relevant field of research and differ very much in their educational background, specific knowledge and amount of time dedicated to the subject of research. Today, citizen science has become especially important in some fields neglected by professional science, e.g. regional research. Recently, another form of citizen science has gained much attention, in which usually many citizen scientist are active (”Citizen Science light“). Internet, smartphone and georeferencing by GPS are important tools for collecting, documenting and communicating the observation data. Besides the scientific results, social relevance through participation and information of citizens (e.g. for conservation issues) play a very important role in these projects. The recently strongly increasing interest in and contribution to citizen science plays an important role to strengthen the link and communication between science and society.  相似文献   

14.
It is widely accepted that there is a considerable gap between the science of conservation biology and the design and execution of biodiversity conservation projects in the field and science is failing to inform the practice of conservation. There are many reasons why this implementation gap exists. A high proportion of papers published in scientific journals by conservation biologists are seldom read outside of the academic world and there are few incentives for academics to convert their science into practice. In turn, field practitioners rarely document their field experiences and experiments in a manner that can meaningfully inform conservation scientists. Issues related to access to scientific literature, scientific relevance in multidisciplinary environments, donor expectations and a lack of critical analysis at all levels of conservation theory and practice are factors that exacerbate the divide. The contexts in which conservation biologists and field practitioners operate are also often highly dissimilar, and each has differing professional responsibilities and expectations that compromise the ability to learn from each other's expertise. Building on recent debate in the literature, and using case studies to illustrate the issues that characterize the divide, this paper draws on the authors' experiences of project management as well as academic research. We identify five key issues related to information exchange: access to scientific literature, levels of scientific literacy, lack of interdisciplinarity, questions of relevance and lack of sharing of conservation-related experiences and suggest new ways of working that could assist in bridging the gap between conservation scientists and field practitioners.  相似文献   

15.
Invasion biology is a growing discipline with clear ecological, social and economic implications. A wide range of research effort is thus required to address the invasion problem, and literature on the topic is extensive. However, the extent to which the invasion biology research is addressing the challenges associated with management and mitigation of the impacts of invasions has been questioned. Using bibliometric analysis, we investigated the extent to which the literature on the subject contributes to implementation of knowledge generated, by addressing aspects of management, policy, and/or implementation; the impact of these papers as indicated by the number of citations they attract; and the geopolitical scale of focus of invasion ecology papers, particularly those that attempt to bridge the knowing-doing gap. We then compared these findings with the information needs of conservation practitioners. We first looked globally at popular search engines and then narrowed our focus to South Africa—one of three regions outside USA where researchers producing highly cited papers in invasion ecology are well represented. At this level, we conducted a content analysis of invasion ecology-related papers, of which at least one author was affiliated to a South African institution. The knowledge base in the field of invasion biology is comprised largely of research oriented towards “knowing”, while research aimed at strategically applying or implementing that knowledge is poorly represented in the scientific literature, and the scale of its emphasis is not local. Conservation practitioners clearly indicate a need for basic knowledge. However, invasion science must develop channels for effective engagement to ensure that the research is contextualised, and will deal with the complex ecological, social and economic challenges posed by invasions.  相似文献   

16.
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense of the world around them. One such partnership is called the student–teacher–scientist partnership, in which teachers and their students participate in and contribute to the research of scientists. This article explores a partnership between a 10th-grade biology teacher, her students, and practicing scientists who collaborated in the design, implementation and evaluation of a horse evolution unit. The primary goal of the collaborative activity was to involve teachers and students in a process of conceptual change as a means of eliminating common misconceptions implicit in horse evolution displays in museums in various parts of the country. The evidence-based lessons developed enhanced students’ understanding of concepts in macroevolution but also connected the science classroom with a community of scientists whose personalization of the horse evolution unit situated biological concepts and the learning experience within the context of real-world issues.  相似文献   

17.
Most studies on tropical conservation questions are conducted by researchers of developed countries from the north. This geographic disconnection was recently criticised by Mammides et al. Here, we reflect on their findings and add further views from scientist’s and journal editor’s perspectives. We argue that journals are, a priori, most strongly interested in research questions and approaches that will likely increase their scientific impact and prestige. This is rarely compatible with publishing articles on questions with restricted global impact or based on single taxa. We question whether small changes in the editorial policy of international conservation journals will considerably improve the geographic diversity in key conservation publications. Rather, thematic scopes of the leading conservation journals should be modified, preferably in close collaboration with leading conservationists from the south. We are convinced that long-term investments in the tropics will create a stronger local scientific community, thus bolstering academic morale, and finally may lead to an increase in the submission and acceptance rate of articles written from scientists from these regions.  相似文献   

18.
In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos – mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a “good” scientist. Tensions between promoting “science” versus promotion of the “scientist”; engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers.  相似文献   

19.
植物保护遗传学研究进展   总被引:50,自引:5,他引:45  
李昂  葛颂 《生物多样性》2002,10(1):61-71
保护遗传学是过用遗传学的原理和研究手段,以生物多样性尤其是遗传多样性的研究和保护为核心的一门新兴学科,近几十年来,遗传学研究在生物多样性保护的理论和实践中发挥着越来越重要的作用。本文简要回顾了保护遗传学的发展历史,研究方向和涉及的概念,着重介绍了植物保护遗传学研究所取得的一些进展,包括植物系统发育重建和保护单元的确定,遗传多样性与物种和群体适应性之间的关系,群体遗传结构与保护策略的制定以及植物遗传资源的鉴定和利用等方面的内容,并强调保护遗传学研究是未来生物多样性和保护生物学研究中一个亟待加强的研究领域。  相似文献   

20.
Conservation genetics is a well‐established scientific field. However, limited information transfer between science and practice continues to hamper successful implementation of scientific knowledge in conservation practice and management. To mitigate this challenge, we have established a conservation genetics community, which entails an international exchange‐and‐skills platform related to genetic methods and approaches in conservation management. First, it allows for scientific exchange between researchers during annual conferences. Second, personal contact between conservation professionals and scientists is fostered by organising workshops and by popularising knowledge on conservation genetics methods and approaches in professional journals in national languages. Third, basic information on conservation genetics has been made accessible by publishing an easy‐to‐read handbook on conservation genetics for practitioners. Fourth, joint projects enabled practitioners and scientists to work closely together from the start of a project in order to establish a tight link between applied questions and scientific background. Fifth, standardised workflows simplifying the implementation of genetic tools in conservation management have been developed. By establishing common language and trust between scientists and practitioners, all these measures help conservation genetics to play a more prominent role in future conservation planning and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号