首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The production of extracellular alkaline proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on casein pH 9.5 at 37 °C. The highest alkaline proteolytic activity (38 U/ml) was verified for culture medium containing glucose and casein at 1% (w/v) as substrates, obtained from cultures developed at 25 °C for 6 days. Cultures developed in Vogel medium with glucose at 2% (w/v) and 0.2% (w/v) NH4NO3 showed higher proteolytic activity (27 U/ml) when compared to the cultures with 1% of the same sugar. Optimum temperature was 40 °C and the half-lives at 40, 45 and 50 °C were 90, 25 and 18 min, respectively. Optimum pH of enzymatic activity was 9.5 and the enzyme was stable from pH 6.0 to 12.0.  相似文献   

2.
This research examined culture parameters influencing the rate of degradation of lignin in lignocellulosic substrates by the Basidiomycete Phanerochaete chrysosporium. Thermomechanical pulps prepared from western hemlock (Tsuga heterophylla) and red alder (Alnus rubra) were chosen as model substrates. Degradation of lignin in shallow, liquid-phase, stationary cultures was 10 times as rapid as in agitated cultures. Lignin degradation was at least 50% more rapid in cultures under 100% O2 than in those under air. Addition of 0.12% nutrient N (dry pulp basis) increased the rate of lignin degradation two- to fivefold; 1.2% added N at first suppressed, then stimulated, lignin degradation. Lignin in the alder pulp was degraded over five times as rapidly as in the hemlock pulp. Addition of glucose (35% of dry pulp) to the pulps containing 0.12% added N completely suppressed polysaccharide depletion during two weeks, but did not influence lignin degradation. The maximum rate of lignin degradation was 3%/day over a two-week incubation, or approximately 2.9 mg/mg fungal cell protein/day. The influence of the examined parameters was in complete accord with those found earlier for synthetic 14C-lignin metabolism by P. chrysosporium.  相似文献   

3.
A periplasmatic phytate-degrading enzyme from Pantoea agglomerans isolated from soil was purified about 470-fold to apparent homogeneity with a recovery of 16% referred to the phytate-degrading activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 60°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 0.34 mmol/l and kcat = 21 s-1 at pH 4.5 and 37°C. The enzyme exhibited a narrow substrate selectivity. Only phytate and glucose-1-phosphate were identified as good substrates. Since this Pantoea enzyme has a strong preference for glucose-1-phosphate over phytate, under physiological conditions glucose-1-phosphate is its most likely substrate. The maximum amount of phosphate released from phytate by the purified enzyme suggests myo-inositol pentakisphosphate as the final product of enzymatic phytate degradation.  相似文献   

4.
A dextran-hydrolysing enzyme from Lipomyces lipofer IGC 4042 was purified from the supernatant of cultures grown on a mineral medium with dextran, by ultrafiltration and gel filtration on Bio Gel A-0.5 m. This preparation gave only one band by disc gel electrophoresis. Glucose was the only product of dextran hydrolysis. Optimum pH and temperature for the activity of the enzyme were pH 4.5–5.0 and 45°C, respectively. The enzyme was most stable over a pH range of 4.5–6.0, and after 2 hours at 50°C maintained over 60% of its original activity. The molecular weight was 29,000 daltons and the isoelectric point was at pH 7. Km (45°C, pH 5) for dextran T-40 was 1.2×10–5 M. Glucose inhibited the enzyme competitively with a Ki (45°C, pH 5) of 0.5 mM.  相似文献   

5.
Summary 1. A chemically defined, minimal medium was developed for the cultivation ofCryptococcus nigricans (glucose, nitrate, thiamin, biotin, and inorganic salts).2. Optimum temperature was found to be 29° C with upper and lower limits at 34° C and 23° C.3. Optimum pH for growth was found to be pH 5.0–5.6.4. Ammonium nitrogen was not assimilated.5.C. nigricans was inhibited by Mycostatin, Amphotericin A and B, and Polymyxin B.This study was supported in part by a grant-in-aid from the Rutgers Research Council.  相似文献   

6.
Summary Thermophilic cultures producing methane from glucose at 55 °C were developed from mesophilic and thermophilic inocula. Rates of fatty acid degradation and methane yields were compared. A high pCO2 was found to decrease the temperature maximum for acetate degradation. In a glucose-enrichment in N2-atomosphere methane production from glucose was possible at 80°C.  相似文献   

7.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

8.
In vitro bleaching of an unbleached hardwood kraft pulp was performed with manganese peroxidase (MnP) from the fungus Phanerochaete sordida YK-624. When the kraft pulp was treated with partially purified MnP in the presence of MnSO4, Tween 80, and sodium malonate with continuous addition of H2O2 at 37°C for 24 h, the pulp brightness increased by about 10 points and the kappa number decreased by about 6 points compared with untreated pulp. The pulp brightness was also increased by 43 points to 75.5% by multiple (six) treatments with MnP combined with alkaline extraction. Our results indicate that in vitro degradation of residual lignin in hardwood kraft pulp with MnP is possible.  相似文献   

9.
With a glucose-limited chemostat culture of Bacillus stearothermophilus, increasing the incubation temperature progressively from 45°C to 63°C led to a progressive marked increase in the maintenance rates of glucose and oxygen consumption. Hence, at a fixed low dilution rate the yield values with respect to glucose and oxygen decreased substantially with increased temperature. However, the apparent Y glucose max and values did not decrease but actually increased with temperature, being highest at 63°C (i.e., close to the maximum growth temperature). With glucose-sufficient cultures growing at a fixed low dilution rate (0.2 h–1) and at their optimum temperature (55°C), glucose and oxygen consumption rates invariably were higher than that of a corresponding glucose-limited culture. Cation (K+ or Mg2+)-limited cultures expressed the highest metabolic rates and with the K+ limited culture this rate was found to be very markedly temperature dependent. As the temperature was increased from 45°C to 63°C the rate of glucose consumption increased 1.8-fold, and that of oxygen consumption by 3.7-fold. The culture pH value also exerted a noticeable effect on the metabolic rate of a glucose-limited culture, particularly at the extremes of pH tolerance (5.5 and 8.5, respectively). A K+-limited culture was less affected with respect to metabolic rate by the culture pH value though the steady state bacterial concentration, and thus the cellular K+ content, changed substantially. These results are discussed in relation to previous findings of the behaviour of this organism in batch culture, and to the behaviour of other thermophilic Bacillus species in chemostat culture.  相似文献   

10.
Summary Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH4)2SO4 precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K m and V max values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L −1 and 0.088 mmol (mg protein) −1 min −1 respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6 of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45 °C.  相似文献   

11.
Summary Pseudomonas paucimobilis was isolated from a consortium which was capable of degrading dicamba (3,6-dichloro-2-methoxybenzoic acid) as the sole source of carbon. The degradation of dicamba byP. paucimobilis and the consortium was examined over a range of substrate concentration, temperature, and pH. In the concentration range of 100–2000 mg dicamba L–1 (0.5–9.0 mM), the degradation was accompanied by a stoichiometric release of 2 mol of Cl per mol of dicamba degraded. The cultures had an optimum pH 6.5–7.0 for dicamba degradation. Growth studies at 10°C, 20°C, and 30°C yielded activation energy values in the range of 19–36 kcal mol–1 and an average Q10 value of 4.0. Compared with the pure cultureP. paucimobilis, the consortium was more active at the lower temperature.  相似文献   

12.
A kraft lignin-degrading bacterium (ITRC S 7 ) was isolated from sludge of pulp and paper mill and characterized as Aneurinibacillus aneurinilyticus by biochemical tests and 16SrRNA gene sequencing. The bacterium did not utilize kraft lignin (KL) as the sole source of carbon and energy. However, this strain reduced the color (58%) and lignin content (43%) from kraft lignin-mineral salt medium when supplemented with glucose at pH 7.6 and 30°C after 6 days. The degradation on addition of glucose in culture medium is clear evidence of co-metabolism of KL by A. aneurinilyticus. The analysis of lignin degradation products by GC-MS in ethyl acetate extract from an A. aneurinilyticus-inoculated sample revealed the formation of low molecular weight aromatic compounds such as guaiacol, acetoguaiacone, gallic acid and ferulic acid, indicating that the bacterium can oxidize of the sinapylic (G units) and coniferylic (S units) alcohol units which are the basic moieties that build the hardwood lignin structure. The low molecular weight aromatic compounds identified in extracts of the inoculated sample favors the idea of biochemical modification of the KL to a single aromatic unit.  相似文献   

13.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

14.
Summary Optimum growth conditions forA. fumigatus strain 4 when citric pectin was the sole carbon source were at a temperature of 45°C, pH 4.0 and an incubation time from 36 to 42h. Under these conditions no cellulase activity was found. When orange pulp was the sole carbon source, optimum polygalacturonase activities were found when the fungus was cultured for 36 h at 45°C and a pH 3.0 to 4.5.  相似文献   

15.
The hyperthermophilic anaerobic eubacterium Thermotoga maritima was grown on glucose as carbon and energy source. During growth 1 mol glucose was fermented to 2 mol acetate, 2 mol CO2 and 4 mol H2. The molar growth yicld on glucose (Yglucose) was about 45 g cell dry mass/mol glucose. In the presence of elemental sulfur growing cultures of T. maritima converted 1 mol glucose to 2 mol acetate, 2 mol CO2 about 0.5 mol H2 and about 3.5 mol H2S. Yglucose was about 45 g/mol. Cell extracts contained all enzymes of the Embden-Meyerhof pathway: hexokinase (0.29 U/mg, 50°C), glucose-6-phosphate isomerase (0.56 U/mg, 50°C), phosphofructokinase (0.19 U/mg, 50° C), fructose-1,6-bisphosphate aldolase (0.033 U/mg, 50°C), triosephosphate isomerase (6.3 U/mg, 50°C), glyceraldehyde-3-phosphate dehydrogenase (NAD+ reducing: 0.63 U/mg, 50°C), phosphoglycerate kinase (3.7 U/mg, 50°C), phosphoglycerate mutase (0.4 U/mg, 50°C); enolase (4 U/mg, 80°C), pyruvate kinase (0.05 U/mg, 50°C). Furthermore, cell extracts contained pyruvate: ferredoxin oxidoreductasee (0.43 U/mg, 60°C); NADH: ferredoxin oxidoreductase (benzylviologen reduction: 0.46 U/mg, 80°C); hydrogenase (benzylviologen reduction: 15 U/mg, 80°C), phosphate acetyltransferase (0.13 U/mg, 80°C), acetate kinase (1.2 U/mg, 55°C), lactate dehydrogenase (0.16 U/mg, 80°C) and pyruvate carboxylase (0.02 U/mg, 50°C). The findings indicate that the hyperthermophilic eubacterium T. maritima ferments sugars (glucose) to acetate, CO2 and H2 involving the Embden-Meyerhof pathway, phosphate acetyltransferase and acetate kinase. Thus, the organism differs from the hyperthermophilic archaeon Pyrococcus furiosus which ferments sugars to acetate, CO2 and H2 involving a modified non-phosphorylated Entner-Doudoroff pathway and acetyl-CoA synthetase (ADP forming).  相似文献   

16.
Summary Incubation of hardwood kraft pulp (HWKP) in agitated aerated cultures of the white-rot fungus Trametes versicolor increases pulp brightness and decreases its residual lignin content. A consequence of this biobleaching with whole cultures is that the resulting pulp also contains fungal biomass (up to ca. 10% (w/w)). In this report culture conditions for the immobilization of T. versicolor on polyurethane foam and bleaching of HWKP with the immobilized fungus are described. The major advantage of using immobilized fungus to bleach HWKP is that the fungal biomass can be separated from the pulp after treatment, resulting in a biologically bleached pulp free of fungal mycelium. From an analysis of pulp samples bleached with free and foam-immobilized mycelium, we conclude that fungal biomass in pulp treated with free mycelium accounts for up to 25% of the reduction in pulp viscosity (indication of cellulose chain length) whereas the zero span breaking length (indication of fibre strength) is not significantly affected by the presence of the fungus. Immobilization of the fungus on polyurethane foam also allows the repeated use of the same fungal biomass to bleach successive batches of pulp, either immediately or after storage at 4°C. Offprint requests to: I. D. ReidIssued as NRCC no. 30975  相似文献   

17.
Summary Degradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil was investigated. In experiments in which [9-14C]-phenanthrene was incubated with cultures of A. polychromogenes containing 150 mg phenanthrene/l it was shown that after 26 h of incubation 47.7% of the recovered radiolabelled carbon originally present was metabolized to 14CO2, 47.8% was recovered from the aqueous fraction, and 4.5% remained in the dichloromethane fraction. Increasing phenanthrene concentration in the culture medium resulted in improved growth and degradation rates, probably due to the higher amount of phenanthrene crystals in the medium. Shifting the temperature from 30°C to 35°C did not influence phenanthrene degradation significantly but inhibited cell division of A. polychromogenes. Medium supplementation with glucose led to stimulation of phenanthrene degradation at low amounts of glucose (0.45 g/l) whereas at higher concentrations (3 g/l) phenanthrene mineralization decreased.Professor Dr. D. Behrens dedicated to his 65th birthdayOffprint requests to: H.-J. Rehm  相似文献   

18.
Bacillus stearothermophilus L1 was isolated by enrichment culture using an alkaline extract of pulp as the carbon source at 65°C and pH 9.0. The bacterium produced extracellular xylanase and -l-arabinofuranosidase (EC 3.2.1.55). The xylanase activity was high when the cells were grown in the presence of d-xylose, whereas the arabinofuranosidase activity was high when grown in media containing l-arabinose. The arabinofuranosidase was purified 59-fold with an 80% yield by DEAE Sephacel and Sephadex G-100 chromatography. The purified enzyme had an apparent molecular mass of 110 000 kDa and consisted of two subunits of 52 500 kDa and 57 500 kDa. Using p-nitrophenyl--l-arabinofuranosidase as the substrate, the enzyme had a Michaelis constant (K m) of 2.2 × 10–4 m, maximum reaction velocity (Vmax) of 11o mol min–1 mg–1, temperature optimum of 70°C and pH optimum of 7.0 (50% activity at pH 8.0). The enzyme was specific for the furanoside configuration. The purified enzyme partially delignified softwood Kraft pulp. Treatment of the pulp with 38 units ml–1 of -l-arabinofuranosidase at 65°C for 2 h at pH 8.0 and 9.0 led to lignin releases of 2.3% and 2.1%, respectively. The enzyme acted synergistically with a thermophilic xylanase in the delignification process, yielding a 19.2% release of lignin. Correspondence to: Eugene Rosenberg  相似文献   

19.
Anaerobic enrichment cultures inoculated with neutral and alkaline (pH 7.0–9.0) sediment and biomat samples from hot-springs in Hveragerdi and Fluir, Iceland, were screened for growth on beech xylan from pH 8.0 to 10.0 at 68° C: no growth occured in cultures above pH 8.4. Five anaerobic xylanolytic bacteria were isolated from enrichment cultures at pH 8.4; all five microbes were Gram-positive rods with terminal spores, and produced CO2, H2, acetate, lactate and ethanol from xylan and xylose. One of the isolates, strain A2, grew from 50 to 75° C, with optimum growth near 68° C, and from pH 5.2 to 9.0 with an optimum between 6.8 and 7.4. Taxonomically, strain A2 was most similar to Clostridium thermohydrosulfuricum. At pH 7.0, the supernatant xylanases of strain A2 had a temperature range from 50 to 78° C with an optimum between 68 and 78° C. At 68° C, xylanase activity occurred from pH 4.9 to 9.1, with an optimum from pH 5.0 to 6.6. At pH 7.0 and 68° C, the K m of the supernatant xylanases was 2.75 g xylan/l and the V max was 2.65 × 10–6 kat/l culture supernatant. When grown on xylose, xylanase production was as high as when grown on xylan. Correspondence to: B. K. Ahring  相似文献   

20.
Summary In order to obtain a better understanding of the behaviour ofPediococcus pentosaceus in food products as well to facilitate the designing of industrial production processes for the organism, the growth and lactic acid production ofPediococcus pentosaceus in a complex glucose medium was followed in batch cultures at different gas environments (CO2, air, N2 and static cultures without gasflow), temperatures (10–50°C), pH (4.3–7.3) and nitrite concentrations (0–700 ppm). Optimal growth was obtained in CO2 at 40°C and pH 6.3 and resulted in a maximum specific growth rate ( max) of 1.27 h–1. In static culture at 40°C and pH 6.3 the max was 1.21 h–1. The max was, compared with static culture, reduced in air (12%) and nitrogen (26%). At 10°C the max was reduced by 99% and at 50°C by 88%. The reduction at pH 4.3 and 7.3 was 65% and 57%, respectively. Nitrite did not affect the max at any pH but increased the lag phase at pH 4.3 by a factor of 12. The lactic acid production was linked to the growth. The total amount of lactic acid produced was the same in all the tested gases and nitrite concentrations and also within the wide temperature range (15–45°C) and pH range (5.3–7.3). Mainly L(+)-lactic acid was produced during the exponential growth phase, but after this growth declined about 30% of the L(+)-lactic acid was converted to D(–)-lactic acid. The lactic acid product yield and the cellmass yied were both affected by the temperature but not by the pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号