首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Great Towns and Regional Polities in the Prehistoric American Southwest and Southeast. Jill E. Neitzel. ed. Albuquerque: University of New Mexico Press, 1999. 325 pp.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems.  相似文献   

9.
10.
11.
12.
The Great Plains of the United States is characterized by a large west–east gradient in annual precipitation and a similar large north–south gradient in annual temperature. Native grasslands and winter wheat are found over a large portion of the precipitation and temperature gradients. In this article, we use long-term data to analyze the differences in the patterns in aboveground net primary production and precipitation-use efficiency between wheat and native grassland ecosystems in the central portion of Great Plains, and their relationships to potential water availability (precipitation). Aboveground net primary production of native grasslands shows a large response to precipitation. Aboveground net primary production of winter wheat has a smaller response to changing precipitation. Annual precipitation-use efficiency of native grasslands is unaffected by increases in average annual precipitation, but precipitation-use efficiency of summer-fallow wheat ecosystems decreases substantially with increased average precipitation. Our results suggest that in the wetter portion of the central Great Plains, summer-fallow wheat management is relatively inefficient, because increased water availability results in diminishing returns. Comparisons with data from continuously cropped wheat confirmed this result. Shifts across the region to continuous cropping of wheat potentially could have significant impacts on regional wheat yield, carbon balance, and economic status. Received 15 October 1999; accepted 10 March 2000.  相似文献   

13.
14.
15.
Aim Increasing geographical range and density of conifers is a major form of land‐cover change in the western United States, affecting fire frequency, biogeochemistry and possibly biodiversity. However, the extent and magnitude of the change are uncertain. This study aimed to quantify the relationship between changing conifer cover and topography. Location The central Great Basin in the state of Nevada, USA. Methods We used a series of Landsat Thematic Mapper satellite images from 1986, 1995 and 2005 to map change in pinyon–juniper woodlands (Pinus monophylla, Juniperus spp.) in the montane central Great Basin of Nevada. We derived fractional greenness for each year using spectral mixture analysis and identified all areas with an above average increase in greenness from 1986 to 1995 and 1995 to 2005. Results Areas with high fractional greenness in 2005 were most likely to occur at elevations between 2200 and 2600 m a.s.l. Increases in fractional greenness between 1986 and 2005 were most likely to occur at elevations below 2000 m a.s.l. and on south‐facing slopes. However, relationships between elevation and increasing greenness for individual mountain ranges varied considerably from the average trend. Fractional greenness values measured by Landsat suggest that the majority of pinyon–juniper woodlands have not reached their maximum potential tree cover. Main conclusions Expansion of pinyon–juniper at low elevations and on south‐facing slopes probably reflects increasing precipitation in the 20th century, higher water use efficiency caused by increasing atmospheric CO2 in the late 20th century and livestock grazing at the interface between shrubland and woodland. Identification of the spatial relationships between changing fractional greenness of pinyon–juniper woodland and topography can inform regional land management and improve projections of long‐term ecosystem change.  相似文献   

16.
17.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号