首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increased interleukin-6 (IL-6) plasma levels have been described to occur during physical exercise. A relative reduction in energy intake after physical activity has also been reported after exercise, indicating a possible involvement of IL-6 as an anorexigenic factor. Given the possible effect of interleukins on appetite, we assessed whether a controlled physical activity bout is related with changes in IL-6, IL-6 soluble receptor (IL-6sR), gp130 and interleukin-18 (IL-18) plasma levels, as well as their relation with post-exercise energy intake. A co-twin intervention study was carried out with five young male monozygotic twin pairs. One co-twin performed 45 min of submaximal exercise on a treadmill near the anaerobic threshold ending with 7 min at 90 % VO2 max, while his co-twin remained non-active. Ad libitum energy intake was tested through a carbohydrate-rich meal test. Venous blood samples were drawn at baseline, immediately after exercise and after the meal ingestion. Plasma concentrations of IL-6, IL-6sR, gp130 and IL-18 were measured via ELISA. IL-6 plasma levels increased after physical activity bout (2.6-fold change; p?=?0.04). A less marked trend, although still significant, was observed for plasma levels of IL-6sR and gp130. Plasma levels of IL-18 did not significantly change during exercise. The twins who exercised exhibited significantly lower energy intake (181 versus 1,195 kcal; p?=?0.04), compared to the co-twins who remained resting. The present study in monozygotic twins shows increased IL-6 plasma levels after acute physical exercise with a significant reduction in energy intake, supporting a linkage between IL-6 and acute post-exercise eating behaviour.  相似文献   

3.
Eight endurance-trained men cycled to volitional exhaustion at 69 +/- 1% peak oxygen uptake on two occasions to examine the effect of carbohydrate supplementation during exercise on muscle energy metabolism. Subjects ingested an 8% carbohydrate solution (CHO trial) or a sweet placebo (Con trial) in a double-blind, randomized order, with vastus lateralis muscle biopsies (n = 7) obtained before and immediately after exercise. No differences in oxygen uptake, heart rate, or respiratory exchange ratio during exercise were observed between the trials. Exercise time to exhaustion was increased by approximately 30% when carbohydrate was ingested [199 +/- 21 vs. 152 +/- 9 (SE) min, P < 0.05]. Plasma glucose and insulin levels during exercise were higher and plasma free fatty acids lower in the CHO trial. No differences between trials were observed in the decreases in muscle glycogen and phosphocreatine or the increases in muscle lactate due to exercise. Muscle ATP levels were not altered by exercise in either trial. There was a small but significant increase in muscle inosine monophosphate levels at the point of exhaustion in both trials, and despite the subjects in CHO trial cycling 47 min longer, their muscle inosine monophosphate level was significantly lower than in the Con trial (CHO: 0.16 +/- 0.08, Con: 0.23 +/- 0.09 mmol/kg dry muscle). These data suggest that carbohydrate ingestion may increase endurance capacity, at least in part, by improving muscle energy balance.  相似文献   

4.
The effect of carbohydrate (CHO) ingestion on antigen- (rather than mitogen-) stimulated T-cell responses to prolonged, intensive exercise may give a more realistic insight into the effect of CHO on T-cell functional capacity and subsequent infection risk. This study investigated the effect of CHO ingestion during prolonged, intensive exercise on influenza- and tetanus toxoid-stimulated T-cell cytokine mRNA expression and proliferation. Mitogen- [phytohemagglutinin (PHA)] stimulated proliferation was assessed for comparison. Responses were assessed following exercise on consecutive mornings to determine any carryover effect. Fifteen male games players performed two exercise trials in a double-blind, randomized, crossover design. Each trial comprised 90 min of intensive, intermittent running on consecutive mornings, with either CHO (6.4% wt/vol) or placebo (PLA) beverage ingestion before, during, and after each bout of exercise. Postexercise CD3(+) cell counts were higher in PLA than CHO on both days (P < 0.05). Antigen-stimulated T-cell cytokine mRNA expression was unaffected by exercise or CHO ingestion. Before exercise on day 2, T-cell proliferative responses to PHA, influenza, and tetanus toxoid were higher in CHO than PLA by 99, 80, and 58%, respectively (P < 0.01 for PHA, P < 0.05 for influenza and tetanus toxoid). At 1 h postexercise on day 2, PHA-induced proliferation was 70% higher in CHO than PLA (P < 0.05), yet there were no differences between trials for antigen-induced proliferative responses. Therefore, mitogen-induced T-cell proliferation following strenuous exercise and CHO does not necessarily reflect responses to specific antigens and, consequently, may not provide a good model for the situation in vivo.  相似文献   

5.
Some research studies have produced data indicating that resistance exercise induces oxidative stress, despite minimal increases in VO2. These studies have primarily relied on oxidative stress markers with low sensitivity and debatable reliability. However, F2-isoprostanes as measured by gas chromatography mass spectrometry are considered to be a reliable and precise indicator of oxidative stress. Carbohydrate ingestion during exercise is associated with reduced levels of stress hormones, which may influence oxidative stress and plasma antioxidant potential. Therefore, the purpose of this study was to investigate the influence of carbohydrate ingestion during resistance training on F2-isoprostanes and plasma antioxidant potential. Thirty strength-trained subjects were randomized to carbohydrate (CHO) or placebo (PLA) groups that lifted weights for 2 h. Subjects received 10 ml kg- 1 h- 1 CHO (6%) or PLA beverages during the exercise. Blood and vastus lateralis muscle biopsy samples were collected before and after exercise and analyzed for cortisol as a marker of general stress, F2-isoprostanes as a measure of oxidative stress, and ferric reducing ability of plasma (FRAP) as a measure of antioxidant potential, and for muscle glycogen, respectively. Decreases in muscle glycogen content did not differ between CHO and PLA. Cortisol and FRAP increased significantly in CHO and PLA (P = 0.008 and 0.044, respectively), but the pattern of change was not different between groups. F2-isoprostanes were unaffected by exercise. These results indicate that exhaustive resistance exercise and carbohydrate ingestion have no effect on oxidative stress or plasma antioxidant potential in trained subjects.  相似文献   

6.
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.  相似文献   

7.
Bananas as an energy source during exercise: a metabolomics approach   总被引:2,自引:0,他引:2  
This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N?=?14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F?-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P?=?0.258). F?-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P?=?0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum)?=?0.869, Q2(cum)?=?0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways.  相似文献   

8.
Effect of carbohydrate ingestion on exercise metabolism   总被引:2,自引:0,他引:2  
Five male cyclists were studied during 2 h of cycle ergometer exercise (70% VO2 max) on two occasions to examine the effect of carbohydrate ingestion on muscle glycogen utilization. In the experimental trial (CHO) subjects ingested 250 ml of a glucose polymer solution containing 30 g of carbohydrate at 0, 30, 60, and 90 min of exercise; in the control trial (CON) they received an equal volume of a sweet placebo. No differences between trials were seen in O2 uptake or heart rate during exercise. Venous blood glucose was similar before exercise in both trials, but, on average, was higher during exercise in CHO [5.2 +/- 0.2 (SE) mmol/l] compared with CON (4.8 +/- 0.1, P less than 0.05). Plasma insulin levels were similar in both trials. Muscle glycogen levels were also similar in CHO and CON both before and after exercise; accordingly, there was no difference between trials in the amount of glycogen used during the 2 h of exercise (CHO = 62.8 +/- 10.1 mmol/kg wet wt, CON = 56.9 +/- 10.1). The results of this study indicate that carbohydrate ingestion does not influence the utilization of muscle glycogen during prolonged strenuous exercise.  相似文献   

9.
Six healthy male subjects exercised after an overnight fast for a fixed 3 min period at a workload equivalent to 100% of their maximal oxygen uptake ( ) on 3 separate occasions. The first test took place after subjects had consumed a mixed diet (43±3% carbohydrate (CHO), 41±5% fat and 16±3% protein) for 3 days, and was followed 2 h later by prolonged cycling to exhaustion at 77±3% to deplete muscle glycogen stores. Following this, subjects consumed a low CHO diet (4±1% CHO, 63±5% fat and 33±6% protein) for the remainder of the day and for the subsequent 2 days; on the morning of the next day a second high intensity test took place. Finally subjects followed a 3 day high CHO diet (73±7% CHO, 17±6% fat and 10±1% protein) before their last test. Acid-base status and selected metabolites were measured on arterialised-venous blood at rest prior to exercise and at intervals for 15 min following exercise. Prior to exercise, plasma pH and blood lactate concentration were higher (p<0.05) after the high CHO diet when compared with the low CHO diet. Pre-exercise plasma bicarbonate, blood PCO2 and blood base excess were all higher after the high (p<0.001,p<0.01,p<0.01 respectively) and normal (p<0.05,p<0.05,p<0.05 respectively) CHO diets when compared with the low CHO diet. During the post-exercise period there were no differences in plasma pH or blood base excess between the three experimental situations; plasma bicarbonate was higher (p<0.05) at 2 min post-exercise after the high CHO diet when compared with the low CHO diet; blood PCO2 was higher throughout the post-exercise period after the high CHO diet when compared with the low CHO diet and at 2 min post-exercise was higher after the normal CHO diet than after the low CHO diet (p<0.5). The post-exercise blood lactate concentration after the high CHO diet was at all times higher than the corresponding values recorded after the normal CHO diet and until 15 min post-exercise was significantly higher than the values recorded after the low CHO diet. The present experiment further substantiates the view that a pattern of dietary and exercise manipulation can significantly influence the acid-base status of the blood and by doing so may influence high intensity exercise performance.  相似文献   

10.
The present study was undertaken to examine the effect of carbohydrate ingestion on plasma and muscle ammonia (NH(3) denotes ammonia and ammonium) accumulation during prolonged exercise. Eleven trained men exercised for 2 h at 65% peak pulmonary oxygen consumption while ingesting either 250 ml of an 8% carbohydrate-electrolyte solution every 15 min (CHO) or an equal volume of a sweet placebo. Blood glucose and plasma insulin levels during exercise were higher in CHO, but plasma hypoxanthine was lower after 120 min (1.7 +/- 0.3 vs. 2.6 +/- 0.1 micromol/l; P < 0. 05). Plasma NH(3) levels were similar at rest and after 30 min of exercise in both trials but were lower after 60, 90, and 120 min of exercise in CHO (62 +/- 9 vs. 76 +/- 9 micromol/l; P < 0.05). Muscle NH(3) levels were similar at rest and after 30 min of exercise but were lower after 120 min of exercise in CHO (1.51 +/- 0.21 vs. 2.07 +/- 0.23 mmol/kg dry muscle; P < 0.05; n = 5). These data are best explained by carbohydrate ingestion reducing muscle NH(3) production from amino acid degradation, although a small reduction in net AMP catabolism within the contracting muscle may also make a minor contribution to the lower tissue NH(3) levels.  相似文献   

11.
The purpose of this study was to determine the separate and combined effects of exercise and insulin on the activation of phosphatidylinositol 3-kinase (PI3-kinase) and glycogen synthase in human skeletal muscle in vivo. Seven healthy men performed three trials in random order. The trials included 1) ingestion of 2 g/kg body wt carbohydrate in a 10% solution (CHO); 2) 75 min of semirecumbent cycling exercise at 75% of peak O(2) consumption; followed by 5 x 1-min maximal sprints (Ex); and 3) Ex, immediately followed by ingestion of the carbohydrate solution (ExCHO). Plasma glucose and insulin were increased (P < 0.05) at 15 and 30 (Post-15 and Post-30) min after the trial during CHO and ExCHO, although insulin was lower for ExCHO. Hyperinsulinemia during recovery in CHO and ExCHO led to an increase (P < 0.001) in PI3-kinase activity at Post-30 compared with basal, although the increase was lower (P < 0. 004) for ExCHO. Furthermore, PI3-kinase activity was suppressed (P < 0.02) immediately after exercise (Post-0) during Ex and ExCHO. Area under the insulin response curve for all trials was positively associated with PI3-kinase activity (r = 0.66, P < 0.001). Glycogen synthase activity did not increase during CHO but was increased (P < 0.05) at Post-0 and Post-30 during Ex and ExCHO. Ingestion of the drink increased (P < 0.05) carbohydrate oxidation during CHO and ExCHO, although the increase after ExCHO was lower (P < 0.05) than CHO. Carbohydrate oxidation was directly correlated with PI3-kinase activity for all trials (r = 0.63, P < 0.001). In conclusion, under resting conditions, ingestion of a carbohydrate solution led to activation of the PI3-kinase pathway and oxidation of the carbohydrate. However, when carbohydrate was ingested after intense exercise, the PI3-kinase response was attenuated and glycogen synthase activity was augmented, thus facilitating nonoxidative metabolism or storage of the carbohydrate. Activation of glycogen synthase was independent of PI3-kinase.  相似文献   

12.
Concentrations of reactive oxygen species (ROS) increase during exercise secondary to increased oxygen uptake, xanthine oxidase activity, and immune system activation. Carbohydrate compared to placebo beverage ingestion is associated with an attenuated cortisol and catecholamine response. Catecholamines can undergo autooxidation to form ROS. We hypothesized that during intense exercise, ingestion of carbohydrate compared to placebo would diminish oxidative stress. Sixteen experienced marathoners ran on treadmills for 3 h at ∼70% VO
2max
on two occasions while receiving carbohydrate or placebo beverages (1 l/h, double-blinded) in a randomized, counterbalanced order. Blood samples were collected before and immediately after exercise, snap frozen in liquid nitrogen, and stored at -80°C until analysis. Plasma samples were analyzed for F2-isoprostanes (FIP) and lipid hydroperoxides (ROOH) as measures for lipid peroxidation, ferric reducing ability of plasma (FRAP) as a measure of plasma antioxidant potential and for cortisol. The pattern of change in cortisol was significantly different between carbohydrate and placebo conditions (P=0.024), with post-exercise levels higher in the placebo condition. Under both carbohydrate and placebo conditions, significant increases in FIP, ROOH, and FRAP were measured, but the pattern of increase was not different (FIP, interaction effect, P=0.472; ROOH, P=0.572; FRAP, P=0.668). Despite an attenuation in the cortisol response, carbohydrate compared to placebo ingestion does not counter the increase in oxidative stress or modulate plasma antioxidant potential in athletes running 3 h at 70% VO
2max
.  相似文献   

13.
Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5–60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis.  相似文献   

14.
Sixteen experienced marathoners ran on treadmills for 3 h at approximately 70% maximal oxygen consumption (Vo(2 max)) on two occasions while receiving 1 l/h carbohydrate (CHO) or placebo (Pla) beverages. Blood and vastus lateralis muscle biopsy samples were collected before and after exercise. Plasma was analyzed for IL-6, IL-10, IL-1 receptor agonist (IL-1ra), IL-8, cortisol, glucose, and insulin. Muscle was analyzed for glycogen content and relative gene expression of 13 cytokines by using real-time quantitative RT-PCR. Plasma glucose and insulin were higher, and cortisol, IL-6, IL-10, and IL-1ra, but not IL-8, were significantly lower postexercise in CHO vs. Pla. Change in muscle glycogen content did not differ between CHO and Pla (P = 0.246). Muscle cytokine mRNA content was detected preexercise for seven cytokines in this order (highest to lowest): IL-15, TNF-alpha, IL-8, IL-1beta, IL-12p35, IL-6, and IFN-gamma. After subjects ran for 3 h, gene expression above prerun levels was measured for five of these cytokines: IL-1beta, IL-6, and IL-8 (large increases), and IL-10 and TNF-alpha (small increases). The increase in mRNA (fold difference from preexercise) was attenuated in CHO (15.9-fold) compared with Pla (35.2-fold) for IL-6 (P = 0.071) and IL-8 (CHO, 7.8-fold; Pla, 23.3-fold; P = 0.063). CHO compared with Pla beverage ingestion attenuates the increase in plasma IL-6, IL-10, and IL-1ra and gene expression for IL-6 and IL-8 in athletes running 3 h at 70% Vo(2 max) despite no differences in muscle glycogen content.  相似文献   

15.
The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of L-[ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 +/- 19% and +77 +/- 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial (P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials (P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 +/- 0.006 vs. 0.061 +/- 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 +/- 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.  相似文献   

16.
We examined the effects of liquid carbohydrate (CHO) supplementation on markers of anabolism following high-intensity resistance exercise. Nine resistance-trained men consumed either CHO or placebo (PLC) 10 minutes before and immediately following 2 resistance exercise sessions. Cortisol (CORT), insulin (INS), ammonia (AMM), and glucose (GLU) were measured before, immediately after, and 1.5 and 4 hours after exercise. Urinary nitrogen (NH(+3)) was measured 24 hours before and after exercise. There was a significant difference in INS levels immediately after exercise and 1.5 hours after exercise. No significant differences were observed for CORT, AMM, GLU, or NH(+3)between treatments. Significant within-group differences were found for the PLC group: CORT before compared with immediately after exercise; INS before compared with immediately after exercise and before compared with 1.5 hours after exercise; and AMM before compared with immediately after exercise and before compared with 1.5 hours after exercise. Significant within-group differences were found for the CHO group: CORT immediately after compared with 1.5 hours after exercise and immediately after compared with 4 hours after exercise; INS before compared with 1.5 hours after exercise; and AMM before compared with immediately after exercise. Liquid CHO ingestion leads to a more favorable anabolic environment immediately following a resistance exercise bout; however, our indirect measures of protein degradation were not altered by CHO ingestion.  相似文献   

17.
Investigators have reported improved endurance performance and attenuated post-exercise muscle damage with carbohydrate-protein beverages (CHO+P) versus carbohydrate-only beverages (CHO). However, these benefits have been demonstrated only when CHO+P was administered in beverage-form, and exclusively in male subjects. Thus, the purposes of this study were to determine if an oral CHO+P gel improved endurance performance and post-exercise muscle damage compared to a CHO gel, and determine if responses were similar between genders. Thirteen cyclists (8 men, 5 women; VO(2)peak = 57.9 +/- 7.0 ml x kg(-1) x min(-1)) completed two timed cycle-trials to volitional exhaustion at 75% of VO(2)peak. At 15-minute intervals throughout these rides, subjects received CHO or CHO+P gels, which were matched for carbohydrate content (CHO = 0.15 g CHO x kg BW(-1); CHO+P = 0.15 g CHO + 0.038 g protein x kg BW(-1)). Trials were performed using a randomly counterbalanced, double-blind design. Subjects rode 13% longer (p < 0.05) when utilizing the CHO+P gel (116.6 +/- 28.5 minutes) versus the CHO gel (102.8 +/- 25.0 minutes). In addition, men (101.8 +/- 24.6; 114.8 +/- 26.2) and women (104.4 +/- 28.6; 119.6 +/- 34.9) responded similarly to the CHO and CHO+P trials, with no significant treatment-by-gender effect. Postexercise creatine kinease (CK) was not significantly different between treatments. However, CK increased significantly following exercise in the CHO trial (183 +/- 116; 267 +/- 214 U x L(-1)), but not the CHO+P trial (180 +/- 133; 222 +/- 141 U x L(-1)). Therefore, to prolong endurance performance and prevent increases in muscle damage, it is recommended that male and female cyclists consume CHO+P gels rather than CHO gels during and immediately following exercise.  相似文献   

18.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

19.
In the present study, we have investigated the effect of carbohydrate and protein hydrolysate ingestion on muscle glycogen resynthesis during 4 h of recovery from intense cycle exercise. Five volunteers were studied during recovery while they ingested, immediately after exercise, a 600-ml bolus and then every 15 min a 150-ml bolus containing 1) 1.67 g. kg body wt(-1). l(-1) of sucrose and 0.5 g. kg body wt(-1). l(-1) of a whey protein hydrolysate (CHO/protein), 2) 1.67 g. kg body wt(-1). l(-1) of sucrose (CHO), and 3) water. CHO/protein and CHO ingestion caused an increased arterial glucose concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually with no measurable glucose uptake observed at 3 h of recovery. Leg glucose uptake was rather constant at 0.9 mmol/min with CHO/protein and CHO ingestion, and insulin levels were stable at 70, 45, and 5 mU/l for CHO/protein, CHO, and water ingestion, respectively. Glycogen resynthesis rates were 52 +/- 7, 48 +/- 5, and 18 +/- 6 for the first 1.5 h of recovery and decreased to 30 +/- 6, 36 +/- 3, and 8 +/- 6 mmol. kg dry muscle(-1). h(-1) between 1.5 and 4 h for CHO/protein, CHO, and water ingestion, respectively. No differences could be observed between CHO/protein and CHO ingestion ingestion. It is concluded that coingestion of carbohydrate and protein, compared with ingestion of carbohydrate alone, did not increase leg glucose uptake or glycogen resynthesis rate further when carbohydrate was ingested in sufficient amounts every 15 min to induce an optimal rate of glycogen resynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号