首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of Neotyphodium endophytic fungi infecting Lolium perenne L. and Lolium arundinaceum Darb. alter the synthesis of several metabolites. In this study we determined the antioxidative capacity of phenolic compounds from L. perenne and L. arundinaceum infected with Neotyphodium lolii (Latch, Christensen et Samuels) and Neotyphodium coenophialum (Morgan-Jones et Gams) Glenn, Bacon et Hanlin, respectively. The antioxidant capacity was determined by measuring the scavenging capacity of aqueous methanolic extracts to the free-radical DPPH (2,2-diphenyl-1-picrylhydrazyl). L. perenne infected with ‘wild-type’ strain endophyte showed the highest scavenging capacity, whereas endophyte-free showed the least. Those infected with the ‘novel’ strains AR1 and AR37 showed intermediate capacities. L. arundinaceum infected with the ‘novel’ strain AR542 showed a lower scavenging capacity compared with endophyte-free counterparts, regardless of the L. arundinaceum germplasm. The endophyte-free Mediterranean and Continental L. arundinaceum showed a higher capacity to scavenge DPPH when compared with the endophyte-infected Mediterranean and Continental L. arundinaceum. These results suggest that the endophytic fungi alter the antioxidative capacity of the grasses.  相似文献   

3.
【背景】内生菌对作物生长发育和抗逆性有重要作用,本团队分离筛选了一株显著促进玉米生长的莫拉维假单胞菌(Pseudomonas moraviensis)GF-55。【目的】揭示莫拉维假单胞菌GF-55的促生抗倒伏能力。【方法】开展了盆栽及温室种植试验,并测定了玉米生长发育和抗倒伏相关指标。【结果】通过分析表明,GF-55菌处理与对照相比,玉米株高、苗干重和苗鲜重分别增加43.47%、26.67%和82.44%,根干重、鲜重、长、体积、表面积和平均直径分别增加231.25%、96.42%、141.68%、46.51%、37.07%和52.38%。菌株GF-55分泌生长激素吲哚乙酸(indole-3-acetic acid,IAA)、嗜铁素相对含量和解磷量分别为30.88μg/mL、50.20%和58.43 mg/L;温室试验发现施菌处理可显著提高玉米吐丝期后茎秆的抗倒伏效果,玉米茎秆穿刺、弯曲和压碎强度较对照分别增加15.78%、55.83%和33.71%。施菌处理的秸秆半纤维素、纤维素和木质素含量较对照分别增加10.56%、2.91%和48.01%。【结论】莫拉维假单胞菌GF-55具有促...  相似文献   

4.
A variety of plants growing on metalliferous soils accumulate metals in their harvestable parts and have the potential to be used for phytoremediation of heavy metal polluted land. There is increasing evidence that rhizosphere bacteria contribute to the metal extraction process, but the mechanisms of this plant–microbe interaction are not yet understood. In this study ten rhizosphere isolates obtained from heavy metal accumulating willows affiliating with Pseudomonas, Janthinobacterium, Serratia, Flavobacterium, Streptomyces and Agromyces were analysed for their effect on plant growth, Zn and Cd uptake. In plate assays Zn, Cd and Pb resistances and the ability of the bacteria to produce indole-3-acetic acid (IAA), 1-amino-cyclopropane-1-carboxylic acid deaminase (ACC deaminase) and siderophores were determined. The isolates showed resistance to high Zn concentrations, indicating an adaptation to high concentrations of mobile Zn in the rhizosphere of Salix caprea. Four siderophore producers, two IAA producers and one strain producing both siderophores and IAA were identified. None of the analysed strains produced ACC deaminase. Metal mobilization by bacterial metabolites was assessed by extracting Zn and Cd from soil with supernatants of liquid cultures. Strain Agromyces AR33 almost doubled Zn and Cd extractability, probably by the relase of Zn and Cd specific ligands. The remaining strains, immobilized both metals. When Salix caprea plantlets were grown in γ-sterilized, Zn/Cd/Pb contaminated soil and inoculated with the Zn resistant isolates, Streptomyces AR17 enhanced Zn and Cd uptake. Agromyces AR33 tendentiously promoted plant growth and thereby increased the total amount of Zn and Cd extracted from soil. The IAA producing strains did not affect plant growth, and the siderophore producers did not enhance Zn and Cd accumulation. Apparently other mechanisms than the production of IAA, ACC deaminase and siderophores were involved in the observed plant–microbe interactions.  相似文献   

5.
6.
Clonal tillers of a genotype of perennial ryegrass (Lolium perenne), either with or without the endophytic fungus Acremonium lolii, were grown under natural light in flowing nutrient solutions with mineral N maintained automatically at concentrations of 3 or 30μm NH4NO3 for 28 days. Uptake of N was monitored daily and dry matter production was assessed by sequential harvesting. The presence of endophyte had no significant effect on shoot or root biomass production at either N level, but shoot: root ratios were significantly increased by endophyte infection at both N levels at some harvests. All plants absorbed NH4+ preferentially to NO3- and the ratio was not affected by endophyte infection. Also, infection did not affect total N content of plants, which was significantly more in plants at the higher N level than at the lower level. It is concluded that endophyte infection had only minor effects on growth and N economy of the plant, under the conditions imposed in this experiment.  相似文献   

7.
Application of ethephon slightly increased the growth of hyphae of Botrytis cinerea. A competitive inhibitor of ethylene binding, 2,5-norbornadiene (NBD), inhibited growth of hyphae and mycelium and retarded the development of Botrytis cinerea. Transfer of the mycelium from an atmosphere containing NBD to air relieved the inhibition, indicating that the NBD effects were non-toxic and reversible. Addition of exogenous ethylene to an atmosphere containing NBD (20 ml 1-1) effectively reduced the inhibition. Inhibition due to 40 ml 1–1 NBD was not relieved by ethylene at any of the concentrations tested; however, a positive effect of ethylene appeared following transfer of the mycelia to air. The results suggest that ethylene may be required for the growth and development of Botrytis cinerea.Abbreviations NBD 2,5-norbornadiene - ethephon 2-chloroethyl-phosphonic acid - PDA potato dextrose agar  相似文献   

8.
9.
重金属递进胁迫对黑麦草初期生长的影响   总被引:14,自引:0,他引:14  
通过研究Cu2+、Zn2+、Cd2+与Pb2+胁迫对黑麦草初期生长的影响,结果表明:4种重金属对种子发芽率抑制效应相对较小,尤其Cu2+与Zn2+的抑制作用最小。高浓度Cu2+、Cd2+胁迫对株高、根系长度、地上生物量的抑制作用相对较大,尤其Cu2+对根系生长的抑制效应最大,在300 mg·L-1下,与对照相比,根长最高下降了 85.48%。高浓度Cd2+胁迫显著降低了叶绿素含量,在300 mg·L-1时比对照降低了45.51%;与对照相比,Cu2+与Zn2+所有处理都增加了叶绿素含量。从递进胁迫进程看,一些重金属对某一生长指标的影响往往表现在低浓度具有促进作用,而高浓度又存在明显的抑制效应。  相似文献   

10.
11.
A total of 10 endophytic actinomycete strains were successfully isolated from healthy shoots and roots of Aquilaria crassna Pierre ex Lec (eaglewood). Analysis of 16S rDNA sequencing of those isolates showed that they belong to members of the genera Streptomyces (2 isolates), Nonomuraea (1 isolate), Actinomadura (1 isolate), Pseudonocardia (1 isolate) and Nocardia (3 isolates). The remaining 2 isolates were unidentified. All of isolates produced the amount of indole-3-acetic acid (IAA) and ammonia ranging between 9.85 ± 0.31 to 15.14 ± 0.22 μg ml?1 and 2 to 60 mg ml?1, respectively. Among 10 isolates tested, the amount of hydroxamate-type siderophore produced by 2 isolates was undetectable. While the remaining 8 isolates produced the amount of hydroxamate-type ranging between 3.21 ± 0.12 and 39.30 ± 0.40 μg ml?1. Also, catechols-type siderophore produced by 9 isolates was undetectable. Actinomadura glauciflava is only one isolate that produced catechols-type 4.12 ± 0.90 μg ml?1. In addition, 10 endophytic actinomycetes showed protease activity ranging from undetectable to 8.16 ± 0.15 unit ml?1. Genetic relatedness amongst these isolates was determined base on Random amplified polymorphic DNA (RAPD) and Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC PCR). Both methodologies generated specific patterns corresponding to particular genotypes. RAPD fingerprinting proved to be slightly more discriminatory than ERIC PCR. This study is the first published report that actinomycetes can be isolated as endophytes within this plant. It is also the first published report that endophytic actinomycetes are capable of producing IAA and siderophores.  相似文献   

12.
Plants have multiple strategies to deal with herbivory, ranging from chemical or physical defenses to tolerating damage and allocating resources for regrowth. Grasses usually tolerate herbivory, but for some cool-season grasses, their strategy may depend upon their interactions with intracellular symbionts. Neotyphodium endophytes are common symbionts in pooid grasses, and, for some host species, they provide chemical defenses against both vertebrate and invertebrate herbivores. Here, it was tested whether defenses provided by Neotyphodium coenophialum in Lolium arundinaceum (tall fescue) are inducible by both mechanical damage and herbivory from an invertebrate herbivore, Spodoptera frugiperda (fall armyworm), via a bioassay and by quantifying mRNA expression for lolC, a gene required for loline biosysnthesis. Both mechanical and herbivore damage had a negative effect on the reproduction of a subsequent herbivore, Rhopalosiphum padi (bird cherry-oat aphid), and herbivore damage caused an up-regulation of lolC. Uninfected grass hosts also had significantly higher foliar N% and lower C:N ratio compared with infected hosts, suggesting greater allocation to growth rather than defense. For L. arundinaceum, N. coenophialum appears to switch its host's defensive strategy from tolerance via compensation to resistance.  相似文献   

13.
Uptake of a few metals by V. volvacea was determined during submerged growth of the organism in sublethal concentration of each metal salt. The uptake of Pb2+ and Hg2+ was 5 and 5.23 micrograms g-1 respectively while that of Cu2+ was 500 micrograms g-1 under experimental conditions. Treatment of spawned substrate separately with different metal salts showed maximum and minimum uptake of Pb2+ (100 micrograms g-1) and Cd2+ (2.93 micrograms g-1) respectively by sporocarps. All metal salts at test concentrations reduced biological efficiency of sporocarp production but markedly by Co2+. Cd2+ and Co2+ were highly toxic to mycelia and sporocarps respectively. The uptake of Cu2+ by mycelia and Pb2+ by sporocarps were highest among the five metals tested. Metal toxicity, tolerance and uptake capacity of V. volvacea differ considerably with concentration of metal ions.  相似文献   

14.
多花黑麦草对不同形态氮的吸收动力学特征研究   总被引:1,自引:0,他引:1  
采用改进常规耗竭法,比较研究了多花黑麦草(Lolium multiflorum Lam.)对NH4+和NO3-吸收动力学特征。结果表明多花黑麦草对NH4+和NO3-吸收符合Miehaelis-Menten方程,它对NH4+的亲和力显著大于对NO3-的亲和力,但对NH4+和NO3-的最大吸收速率差异不显著,说明多花黑麦草偏爱吸收NH4+,在实际污水净化过程中,多花黑麦草具有优先吸收NH4+的趋势,若有足够的停留时间,其对NH4+净化程度会更高些;当吸收系统微生物受抑制时,多花黑麦草对NO3-的吸收速率明显降低,亲和力明显提高,可见微生物对吸收体系中氮素的去除有一定促进作用。  相似文献   

15.
Lainé  P.  Ourry  A.  Boucaud  J.  Salette  J. 《Plant and Soil》1998,202(1):61-67
Roots of higher plants are usually exposed to varying spatial and temporal changes in concentrations of soil mineral nitrogen. A split root system was used to see how Lolium multiflorum Lam. roots adapt to such variations to cope with their N requirements. Plants were grown in hydroponic culture with their root system split in two spatially separated compartments allowing them to be fed with or without KNO3. Net NO3 - uptake, 15NO3 - influx and root growth were studied in relation to time. Within less than 24 h following deprivation of KNO3 to half the roots, the influx in NO3 - fed roots was observed to increase (about 200% of the influx measured in plant uniformly NO3 - supplied control plant) thereby compensating the whole plant for the lack of uptake by the N deprived roots. Due to the large NO3 - concentrations in the roots, the NO3 - efflux was also increased so that the net uptake rate increased only slightly (35% maximum) compared with the values obtained for control plants uniformly supplied with NO3 -. This increase in net NO3 - uptake rate was not sufficient to compensate the deficit in N uptake rate of the NO3 - deprived split root in the short term. Over a longer period (>1 wk), root growth of the part of the root system locally supplied with NO3 - was stimulated. An increase in root growth was mainly responsable for the greater uptake of nitrate in Lolium multiflorum so that it was able to fully compensate the deficit in N uptake rate of the NO3 - deprived split root.  相似文献   

16.
17.
To establish phylogenetic relationships and estimate the intra and interspecific divergence, the amplification and the sequencing of the internal transcribed spacers of ribosomal DNA (ITS = ITS1 + 5.8S + ITS2) were analyzed in Tunisian complex Lolium–Festuca DNA. These spacer regions have evolved mainly by point mutations. Results revealed a high level of polymorphism within studied species. Significant similarities were observed between these two species and showed the existence of an important phylogenetic relationship. Besides, this molecular approach has revealed two new clusterings, with a homologous ITS gene namely: Bromus hordeaceus and Hordeum murinum subsp. This could be explained by the conservation of an ancestral ITS gene in some fescue plants. Thus, Tunisian tall fescue and perennial ryegrass may derive from Bromus hordeaceus and Hordeum murinum subsp. Considerable morphology and bioclimatic distribution similarities were discovered in ITS sequences within the same species. This study can be of great help to identify suitable accessions that could be used in local fescue and ryegrass improvement program.  相似文献   

18.
从印楝植物内生真菌Phomopsis sp.的菌丝体提取物中分离得到4个化合物,通过波谱技术分别鉴定为水苏碱(1)、甲基-β-D-葡萄糖苷(2)、过氧化麦角甾醇(3)、腺嘌呤核苷(4),这些化合物均为首次从该属真菌中分离得到。  相似文献   

19.
Zinc and lead biosorption by living non-growing filamentous fungus Paecilomyces marquandii was examined for its potential application in heavy metals elimination from contaminated areas. Metal uptake by the studied fungus was pH dependent and reached the level of 308 mg of Zn2+ g−1 and 505 mg of Pb2+ g−1 at pH of 7.5 caused by microprecipitation in slightly alkaline environment. All other metal studies were cultivated with unregulated pH yielding the maximum of 186.2 mg of Zn2+ g−1 and 305.8 mg of Pb2+ g−1. Interestingly, zinc binding by mycelium increased intensively after 15 h of incubation, whereas the lead concentration in biomass extended gradually and proportionally to the initial concentration and the time of contact. The study showed that thermal pretreatment of mycelium led to a decline in metal uptake, especially in the case of zinc. The mycelium slightly digested by the cell wall lytic enzyme complex, could adsorb lead twice as well after 2 h of exposure whereas zinc loading did not differ from the metal uptake by mycelia without any digestion procedure. The release of potassium ions from the mycelium, concomitant with lead uptake was observed suggesting ion exchange participation in lead binding. Energy-dispersive X-ray analysis, X-ray diffraction and FTIR spectroscopy revealed the presence of both metals hydrocarbonates on the mycelium surface. Additionally, the contribution of carboxyl and amide groups, originating from the mycelium, in metal binding was confirmed by FTIR analysis.The obtained results suggest that the effective metals uptake by P. marquandii was due to a combined mechanism with a dominant role of metabolism dependent microprecipitation.  相似文献   

20.
Zhang  Huaiyuan  Kang  Xinxin  Wang  Ruixue  Xin  Feifei  Chang  Yufei  Zhang  Yingtong  Song  Yuanda 《Biotechnology letters》2022,44(4):595-604
Biotechnology Letters - Oxygen availability is a limiting factor for lipid biosynthesis in eukaryotic microorganisms. Two bacterial hemoglobins from Vitreoscilla sp. (VHb) and Shinorhizobium...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号