首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide natural products show broad biological properties and are commonly produced by orthogonal ribosomal and nonribosomal pathways in prokaryotes and eukaryotes. To harvest this large and diverse resource of bioactive molecules, we introduce here natural product peptidogenomics (NPP), a new MS-guided genome-mining method that connects the chemotypes of peptide natural products to their biosynthetic gene clusters by iteratively matching de novo tandem MS (MS(n)) structures to genomics-based structures following biosynthetic logic. In this study, we show that NPP enabled the rapid characterization of over ten chemically diverse ribosomal and nonribosomal peptide natural products of previously unidentified composition from Streptomycete bacteria as a proof of concept to begin automating the genome-mining process. We show the identification of lantipeptides, lasso peptides, linardins, formylated peptides and lipopeptides, many of which are from well-characterized model Streptomycetes, highlighting the power of NPP in the discovery of new peptide natural products from even intensely studied organisms.  相似文献   

2.
枯草芽孢杆菌抗菌肽生物合成的研究进展   总被引:1,自引:0,他引:1  
革兰氏阳性菌模式生物--枯草芽孢杆菌能分泌多种肽类及由肽类衍生的抗菌活性物质,按合成途径不同,可分为核糖体肽和非核糖体肽。其中,非核糖体肽分子量较小,一般为3000Da以下,其生物合成是通过多功能复合酶系--非核糖体肽链合成酶来完成的,多发生在菌体生长停止之后;而核糖体肽分子量较大,其合成多于菌体快速生长时期。非核糖体肽链合成酶和核糖体肽的合成及其调控均需基因参与,而这一系列基因就构成了各种抗菌肽生物合成的基因簇。对核糖体肽和非核糖体肽的生物合成及其相关调控机制进行了综述。  相似文献   

3.
Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non‐ribosomal peptides. Synthesis of non‐ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication‐mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM domains from two plasmids. Successful production as well as secretion of the expected dipeptide was detected. This opens the possibility of using yeast as a eukaryotic platform for fast assessment of new module combinations for the development of novel NRP compounds. Biotechnol. Bioeng. 2010;106: 841–844. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Genome mining has unlocked a veritable treasure chest of natural compounds. However, each family of natural products requires a genome-mining approach tailored to its unique features to be successful. Lasso peptides are ribosomally synthesized and posttranslationally modified products with a unique three-dimensional structure. Advances in the understanding of these molecules have informed the design of strategies to identify new members of the class in sequenced genomes. This review presents the bioinformatic methods used to discover novel lasso peptides and describes how such analyses have afforded insights into the biosynthesis and evolution of this peptide class.  相似文献   

5.
微生物能够产生众多结构和生物活性多样的次生代谢产物,而其生物合成基因簇的挖掘和异源表达是药物创新和产量提高的必要前提. 在过去20年里,大量重要天然产物的生物合成基因簇在微生物中被不断的发现. 在这些被挖掘的基因簇中,肽类抗生素的生物合成基因簇占了很大比重.肽类抗生素因具有抗菌、抗肿瘤、抗病毒等多种生物学活性而备受化学家和药物学家的重视. 如能了解它们的生物合成机制,实现其基因簇的异源表达,将使合理化遗传修饰生物合成通路获取结构类似物(药物开发)和提高产量成为可能. 大肠杆菌作为最广泛、最成功的表达体系,常用来表达外源基因,但一般只能表达一个或几个基因,却很少有用它来表达整个生物合成基因簇. 2001年,Khosla和Cane在E.coli中成功异源表达了一个复杂聚酮天然产物(红霉素苷原6dEB)基因簇. 这是首个有关在E.coli中异源表达天然产物生物合成基因簇的研究. 至此之后,大肠杆菌开始作为生物合成基因簇的异源表达宿主,越来越受到相关领域的重视. 紧接着核糖体肽和非核糖体肽生物合成基因簇也相继在大肠杆菌中成功异源表达. 本文对肽类抗生素生物合成基因簇在E.coli中的异源表达进行了综述.  相似文献   

6.
Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of antigen-presenting cells is an effective extracellular representation of the intracellular antigen content. The intracellular proteasome-dependent proteolytic machinery is required for generating MHC class I-presented peptides. These peptides appear to be derived mainly from newly synthesized defective ribosomal products, ensuring a rapid cytotoxic T lymphocyte-mediated immune response against infectious pathogens. Here we discuss the generation of MHC class I antigens on the basis of the currently understood molecular, biochemical and cellular mechanisms.  相似文献   

7.
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.  相似文献   

8.
Many viral proteins that contain MHC class I-restricted peptides are long-lived, and it is elusive how they can give rise to class I epitopes. Recently, we showed that direct presentation of an epitope of the long-lived lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP) required neosynthesis in accordance with the defective ribosomal products hypothesis. In this study, we report that LCMV-NP can be cross-primed in mice using either LCMV-NP-transfected human HEK293 or BALB/c-derived B8 cells as Ag donor cells. In addition, we establish that contrary to direct presentation, cross-presentation required accumulation of the mature LCMV-NP and could not be sustained by the newly synthesized LCMV-NP protein, intermediate proteasomal degradation products, or the minimal NP396 epitope. Nevertheless, NP cross-presentation was enhanced by heat shock and was blunted by inhibitors of heat shock protein 90 and gp96. We propose that cross-presentation has evolved to sustain the presentation of stable viral proteins when their neosynthesis has ceased in infected donor cells.  相似文献   

9.
The nature, and even the existence, of trypanosome mitochondrial ribosomes has been the subject of some debate. We investigated this further in the insect trypanosome, Crithidia fasciculata. In sucrose gradients of parasite lysates, mitochondrial ribosomal RNA co-sediments at approximately 35S with nascent peptides synthesized in the presence of the cytosolic translational inhibitor, cycloheximide. Co-sedimenting peptides in this peak are much reduced when the parasites are treated with the bacterial translational inhibitor, chloramphenicol. In CsCl gradients this peak resolves at a buoyant density of 1.42 g/cm(3), a value typical for mito-ribosomes. Electron microscopy of peak material shows particles smaller than cytosolic ribosomes, but with characteristic ribosomal shapes. We propose that these particles represent the parasite's mitochondrial ribosomes.  相似文献   

10.
Several factors reduce the efficacy of natural peptides as drug candidates; chief among these is their rapid digestion by human proteases. Over the last few decades, a number of strategies have been employed to increase the enzymatic stability of peptides, including the introduction of non-natural amino acids. This study aims at the investigation of the effect of side chain fluorination on the stability of peptides in human blood plasma. Ten model peptides with different non-natural amino acids were designed, synthesized and subjected to enzymatic degradation in human blood plasma. The stability of the studied peptides was followed by HPLC analysis and compared to the control peptide built with only proteinogenic residues. Four main hydrolysis products were detected and identified by mass spectrometry, three of them being characteristic cleavage products of the serine protease Elastase. A final enzymatic study with isolated Elastase validated then the outcome of the plasma study. This case study contributes to the application of fluorinated amino acids in the design of proteolytically stable peptides and proteins with potential clinical relevance.  相似文献   

11.
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.  相似文献   

12.
It is well known that standard peptides, which comprise proteinogenic amino acids, can act as specific chemical probes to target proteins with high affinity. Despite this fact, a number of peptide drug leads have been abandoned because of their poor cell permeability and protease instability. On the other hand, nonstandard peptides isolated as natural products often exhibit remarkable pharmaco-behavior and stability in vivo. Although it is likely that numerous nonstandard therapeutic peptides capable of recognizing various targets could have been synthesized, enzymes for nonribosomal peptide syntheses are complex; therefore, it is difficult to engineer such modular enzymes to build nonstandard peptide libraries. Here we describe an emerging technology for the synthesis of nonstandard peptides that employs an integrated system of reconstituted cell-free translation and flexizymes. We summarize the historical background of this technology and discuss its current and future applications to the synthesis of nonstandard peptides and drug discovery.  相似文献   

13.
Many glycine peptides support growth of a glycine auxotroph of Escherichia coli. If the alpha-amino group of these peptides is methylated, the products are still utilized for growth, and also retain comparable ability with the unsubstituted peptides to compete with natural peptides for transport into the cell. In contrast, glycine peptides devoid of an alpha-amino group, or that have the alpha-amino group substituted by one of a number of acyl groups are not utilized, although E. coli possesses intracellular enzymic activity able to release glycine from such compounds; further, these derivatives do not compete with natural peptides for transport into the cell.  相似文献   

14.
Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas   总被引:12,自引:1,他引:11       下载免费PDF全文
《The Journal of cell biology》1983,96(5):1451-1463
Cells of Chlamydomonas reinhardtii were pulse-labeled in vivo in the presence of inhibitors of cytoplasmic (anisomycin) or chloroplast (lincomycin) protein synthesis to ascertain the sites of synthesis of chloroplast ribosomal proteins. Fluorographs of the labeled proteins, resolved on two-dimensional (2-D) charge/SDS and one-dimensional (1-D) SDS-urea gradient gels, demonstrated that five to six of the large subunit proteins are products of chloroplast protein synthesis while 26 to 27 of the large subunit proteins are synthesized on cytoplasmic ribosomes. Similarly, 14 of 31 small subunit proteins are products of chloroplast protein synthesis, while the remainder are synthesized in the cytoplasm. The 20 ribosomal proteins shown to be made in the chloroplast of Chlamydomonas more than double the number of proteins known to be synthesized in the chloroplast of this alga.  相似文献   

15.
Hepatitis C virus (HCV) is an important human pathogen that affects approximately 100 million people worldwide. Its RNA genome codes for a polyprotein, which is cleaved by viral and cellular proteases to produce at least 10 mature viral protein products. We report here the discovery of a novel HCV protein synthesized by ribosomal frameshift. This protein, which we named the F protein, is synthesized from the initiation codon of the polyprotein sequence followed by ribosomal frameshift into the -2/+1 reading frame. This ribosomal frameshift requires only codons 8-14 of the core protein-coding sequence, and the shift junction is located at or near codon 11. An F protein analog synthesized in vitro reacted with the sera of HCV patients but not with the sera of hepatitis B patients, indicating the expression of the F protein during natural HCV infection. This unexpected finding may open new avenues for the development of anti-HCV drugs.  相似文献   

16.
Natural products continue to provide privileged scaffolds for drug discovery. However, challenges in supply and structure diversification can limit development. Here, we discuss recent (2017–2020) examples of synthetic biology approaches used to address challenges in supply and contribute to structure diversification of selected plant and bacterial natural products. Our examples include plant terpenoids, alkaloids, and lignans and bacterial polyketides, nonribosomal peptides, and ribosomally synthesized and posttranslationally modified peptides.  相似文献   

17.
《The Journal of cell biology》1984,98(6):2011-2018
Polyadenylated RNA from Chlamydomonas was translated in a cell-free rabbit reticulocyte system that employed [35S]methionine. Antibodies made to four chloroplast ribosomal proteins synthesized in the cytoplasm and imported into the organelle were used for indirect immunoprecipitation of the labeled translation products, which were subsequently visualized on fluorographs of SDS gels. The cytoplasmically synthesized chloroplast ribosomal proteins were first seen as precursors with apparent molecular weights of 1,000 to 6,000 greater than their respective mature forms. Processing of the ribosomal protein precursors to mature proteins was affected by adding a postribosomal supernatant that had been extracted from cells of Chlamydomonas. In contrast to the chloroplast ribosomal proteins synthesized in the cytoplasm, two such proteins made within the chloroplast were found to be synthesized in mature form in cell-free wheat germ translation systems programmed with nonpolyadenylated RNA.  相似文献   

18.
Polyclonal antibodies were elicited against seven of the 33 different proteins of the large subunit of the chloroplast ribosome from Chlamydomonas reinhardtii. Three of these proteins are synthesized in the chloroplast and four are made in the cytoplasm and imported. In western blots, six of the seven antisera are monospecific for their respective large subunit ribosomal proteins, and none of these antisera cross-reacted with any chloroplast small subunit proteins from C. reinhardtii. Antisera to the three chloroplast-synthesized ribosomal proteins cross-reacted with specific Escherichia coli large subunit proteins of comparable charge and molecular weight. Only one of the four antisera to the chloroplast ribosomal proteins synthesized in the cytoplasm cross-reacted with an E. coli large subunit protein. None of the antisera cross-reacted with any E. coli small subunit proteins. On the assumption of a procaryotic, endosymbiotic origin for the chloroplast, those chloroplast ribosomal proteins still synthesized within the organelle appear to have retained more antigenic sites in common with E. coli ribosomal proteins than have those which are now the products of cytoplasmic protein synthesis. Antisera to this cytoplasmically synthesized group of chloroplast ribosomal proteins did not recognize any antigenic sites among C. reinhardtii cytoplasmic ribosomal proteins, suggesting that the genes for the cytoplasmically synthesized chloroplast ribosomal proteins either are not derived from the cytoplasmic ribosomal protein genes or have evolved to a point where no antigenic similarities remain.   相似文献   

19.
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into Arabidopsis cytosolic ribosomal composition and its post-translational modifications. In silico digestion of all 409 ribosomal protein sequences in Arabidopsis defined the proportion of theoretical gene-specific peptides for each gene family and highlighted the need for low m/z cutoffs of MS ion selection for MS/MS to characterize low molecular weight, highly basic ribosomal proteins. We undertook an extensive MS/MS survey of the cytosolic ribosome using trypsin and, when required, chymotrypsin and pepsin. We then used custom software to extract and filter peptide match information from Mascot result files and implement high confidence criteria for calling gene-specific identifications based on the highest quality unambiguous spectra matching exclusively to certain in silico predicted gene- or gene family-specific peptides. This provided an in-depth analysis of the protein composition based on 1446 high quality MS/MS spectra matching to 795 peptide sequences from ribosomal proteins. These identified peptides from five gene families of ribosomal proteins not identified previously, providing experimental data on 79 of the 80 different types of ribosomal subunits. We provide strong evidence for gene-specific identification of 87 different ribosomal proteins from these 79 families. We also provide new information on 30 specific sites of co- and post-translational modification of ribosomal proteins in Arabidopsis by initiator methionine removal, N-terminal acetylation, N-terminal methylation, lysine N-methylation, and phosphorylation. These site-specific modification data provide a wealth of resources for further assessment of the role of ribosome modification in influencing translation in Arabidopsis.  相似文献   

20.
Nonribosomal peptide synthetase (NRPS) is a programmable modular machinery that produces a number of biologically active small-molecule peptides. Saframycin A is a potent antitumor antibiotic with a unique pentacyclic tetrahydroisoquinoline scaffold. We found that the nonribosomal peptide synthetase SfmC catalyzes a seven-step transformation of readily synthesized dipeptidyl substrates with long acyl chains into a complex saframycin scaffold. Based on a series of enzymatic reactions, we proposed a detailed mechanism involving the reduction of various peptidyl thioesters by a single R domain followed by iterative C domain-mediated Pictet-Spengler reactions. This shows that NRPSs possess a remarkable capability to acquire novel function for diversifying structures of peptide natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号