首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenanthrene (Phe) and pyrene (Pyr) are two typical polycyclic aromatic hydrocarbons (PAHs) found in contaminated soil. This study investigated physiological and biochemical responses of rice (Oryza sativa L.) to PAH stress after they were planted in soils contaminated with Phe and Pyr, in the presence or absence of a PAH-degrading bacteria (Acinetobacteria sp.). A number of parameters including biomass and water, chlorophyll and chlorophyll a/b ratio, electrolyte leakage, activities of superoxide dismutase (SOD) and peroxidase, and soluble carbohydrate and soluble protein contents were monitored. Results show that rice plants have good resistance and tolerance to lower levels of PAHs stress, while adding high levels of PAHs to soils resulted in adverse effects on rice plants such as a reduction in biomass and damage to photosynthetic function. Water content and SOD activities were the most sensitive indicators of PAH stress among the observed parameters. Inoculation with PAH-degrading bacteria promoted growth and photosynthesis of rice.  相似文献   

2.
In order to investigate the effects of soil microorganisms on biochemical and physiological response of plants to PAHs, PAH-degrading bacteria (Acinetobacter sp.) and/or arbuscular mycorrhizal fungus (Glomus mosseae) were inoculated with ryegrass (Lolium multiflorum) under four different concentrations of phenanthrene and pyrene (0, 50 + 50, 100 + 100, 200 + 200 mg kg–1) in soils. Acinetobacter sp. played limited roles on the growth of ryegrass, chlorophyll content, water soluble carbohydrate content, malondialdehyde (MDA) content, activities of superoxide dismutase (SOD) and peroxidase (POD) in shoot. By contrast, G. mosseae significantly (P < 0.01) increased ryegrass growth, partially by improving the photosynthetic activity through increasing the chlorophyll content in shoot. G. mosseae also significantly decreased MDA content in shoot. However, G. mosseae significantly increased SOD activity in shoot, which seemed to be resulted from significantly higher pyrene concentrations in shoot. The present study suggested that AM fungi could reduce the damage of cell membranes caused by free radicals, which may be one of the mechanisms involved in mycorrhizal alleviation of plant stress under PAHs. The present study indicated that the dual inoculation was superior to single inoculation in remediating PAHs contaminated soils.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   


3.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

4.
The effect of arbuscular mycorrhizal fungi (AMF) on the reduction of soil polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and growth of leek (Allium porrum L. cv. Musselburgh) plants was studied under greenhouse conditions. This experiment was a 3 × 2 × 2 × 4 factorial design including three mycorrhizal treatments (non-AMF, Glomus intraradices, and G. versiforme strains), two microorganism statuses (with and without soil bacteria), two PAH chemicals (anthracene and phenanthrene), and four PAH concentrations (three concentrations added and one control). Leek growth was reduced significantly in soils spiked with anthracene or phenanthrene. Inoculation with either Glomus intraradices or G. versiforme not only increased N and P uptake and plant growth, but also enhanced PAH disappearance in soil. After 12 weeks of potcultures, the anthracene and phenanthrene concentrations in soils were decreased as compared to their initial level, 9%–31% versus 43%–88%, respectively. Reductions in concentration were larger for phenanthrene than anthracene. The addition of a soil microorganism (SM) extract in potcultures accelerated the disappearance of PAHs. The decrease of PAHs in soil was mainly attributed to the enhanced nutrient uptake by AMF, leading to improved plant growth, which, in turn, may stimulate soil microbial activity. This study shows the interrelationships between AMF, plants, other SMs, and PAH disappearance in soil. The phytoremediation of soil contaminated with PAHs can be accelerated through inoculation with AMF and other SMs.  相似文献   

5.
Present experiments were conducted to assess the response of Panicum turgidum to salinity and possible role of arbuscular mycorrhizal fungi (AMF) in enhancing the salt tolerance. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR) and compatible solutes were increased by salt stress and were further enhanced by AMF inoculation. Hydrogen peroxide and malonaldehyde content increased in salt-stressed plants while a reduction was observed due to AMF inoculation. Salt-stressed plants showed higher activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase as compared to control and AMF-inoculated plants. Salt stress caused significant decrease in phosphorous, potassium and calcium uptake but an increase in sodium uptake was observed. AMF alleviate salinity-induced negative impact on the plant growth and nutrient uptake by reducing the oxidative damage through strengthening of the antioxidant system.  相似文献   

6.
Pot experiments were conducted to evaluate the damaging effects of salinity on Sesbania sesban plants in the presence and absence of arbuscular mycorrhizal fungi (AMF). The selected morphological, physiological and biochemical parameters of S. sesban were measured. Salinity reduced growth and chlorophyll content drastically while as AMF inoculated plants improved growth. A decrease in the number of nodules, nodule weight and nitrogenase activity was also evident due to salinity stress causing reduction in nitrogen fixation and assimilation potential. AMF inoculation increased these parameters and also ameliorated the salinity stress to some extent. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as non enzymatic antioxidants (ascorbic acid and glutathione) also exhibited great variation with salinity treatment. Salinity caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of salinity.  相似文献   

7.
Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH) biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi), and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging) revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.  相似文献   

8.
Binet  Ph.  Portal  J.M.  Leyval  C. 《Plant and Soil》2000,227(1-2):207-213
Polycyclic aromatic hydrocarbons (PAH) can be degraded in the rhizosphere but may also interact with vegetation by accumulation in plant tissues or adsorption on root surface. Previous studies have shown that arbuscular mycorrhizal (AM) fungi contribute to the establishment and maintenance of plants in a PAH contaminated soil. We investigated the fate of PAH in the rhizosphere and mycorrhizosphere including biodegradation, uptake and adsorption. Experiments were conducted with ryegrass inoculated or not with Glomus mosseae P2 (BEG 69) and cultivated in pots filled with soil spiked with 5 g kg−1 of anthracene or with 1 g kg−1 of a mixture of 8 PAH in a growth chamber. PAH were extracted from root surfaces, root and shoot tissue and rhizosphere soil and were analysed by GC-MS. In both experiments, 0.006 – 0.11‰ of the initial extractable PAH concentration were adsorbed to roots, 0.003 – 0.16‰ were found in root tissue, 0.001‰ in shoot tissue and 36 – 66% were dissipated, suggesting that the major part of PAH dissipation in rhizosphere soil was due to biodegradation or biotransformation. With mycorrhizal plants, anthracene and PAH were less adsorbed to roots and shoot tissue concentrations were lower than with non mycorrhizal plants, which could contribute to explain the beneficial effect of AM fungi on plant survival in PAH contaminated soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) inoculation and biochar amendment has been reported to improve growth of several crop plants however their role in stress amelioration individually as well as in combination has not been worked out. This experiment was conducted to evaluate the application of AMF and biochar on the performance of chickpea under drought stress. The treatments included the individual as well as combined treatment of AMF and biochar to drought stressed and normal chickpea plants. Plants inoculation improved growth in terms of shoot and root length, leaf area and number of branches which was observed to show a steep decline due to drought stress. Drought declined the AMF colonization potential though biochar amendment ameliorated the negative effects of drought significantly by improving the spore population, number of mycelium, vesicle and arbuscules and the percentage of colonization as well. Increased chlorophyll synthesis in biochar and AMF treated plants was obvious, which lead to significant enhancement in the net photosynthetic efficiency. Drought stress also declined the relative water content (RWC) and membrane stability index (MSI), while treatment of biochar and AMF either individually or in combination mitigated the deleterious effects to considerable extent and caused a significant enhancement in RWC and MSI under normal conditions. Amendments with biochar and AMF inoculation increased the nitrogen fixation attributes including the number and weight of nodules, leghemoglobin content and activity of nitrate reductase enzyme leading to greater uptake and assimilation of nitrogen in them when compared to drought stressed plants. Drought stressed chickpea plants exhibited considerable reduction in uptake of nitrogen and phosphorous which was ameliorated by biochar and AMF treatments. It could be suggested that increase in growth and physiological attributes in chickpea due to biochar amendments and AMF inoculation under drought stress were plausibly due to their involvement in nitrogen and phosphorous uptake, chlorophyll synthesis and photosynthesis.  相似文献   

10.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

11.
Kai Sun  Juan Liu  Li Jin  Yanzheng Gao 《Plant and Soil》2014,374(1-2):251-262

Aims

Endophytic bacteria are ubiquitous in plants, but little information is available on the influence of endophytic bacteria on the uptake and metabolism of PAH by plants. Thus, we seek to investigate whether the colonization of a target plant by a PAH-degrading endophytic bacterium would improve the PAH metabolism of the plant and reduce the risk of plant PAH contamination.

Methods

A pyrene-degrading endophyte was isolated from PAH-contaminated plants using enrichment culture. After root inoculation with the isolated bacterium, greenhouse container experiments were conducted. Pyrene residues in soil and plant samples were analyzed by HPLC.

Results

A pyrene-degrading endophytic bacterium, Staphylococcus sp. BJ06, was isolated from Alopecurus aequalis and could degrade 56.0 % of pyrene (50 mg?·?L?1) within 15 days. BJ06 grew and degraded pyrene efficiently under environmental conditions. The bacterium significantly promoted ryegrass growth and pyrene removal from contaminated soil in container experiments. The pyrene concentrations in ryegrass roots and shoots in endophyte-inoculated planted soil were reduced by 31.01 % and 44.22 %, respectively, compared with endophyte-free planted soil.

Conclusions

We have provided new perspectives on the regulation and control of plant uptake of organic contaminants with endophytic bacteria. The results of this study will be valuable to risk assessments of plant PAH contamination.  相似文献   

12.
王穗子  金则新  李月灵  谷银芳 《生态学报》2015,35(23):7699-7708
以盆栽海州香薷为研究对象,模拟Cu胁迫条件下,接种丛枝菌根真菌(AMF)对海州香薷叶片光合色素含量、抗氧化酶活性、抗氧化剂含量、膜脂过氧化程度的影响。结果表明:(1)与对照相比,Cu胁迫使海州香薷叶片叶绿素a(Chl a)、叶绿素b(Chl b)、总叶绿素(Chl(a+b))、类胡萝卜素(Car)含量以及叶绿素a/b(Chl a/b)均显著降低,抗氧化酶活性和抗氧化剂含量也显著下降,质膜相对透性(MRP)和丙二醛(MDA)含量显著增大。(2)与Cu胁迫相比,Cu胁迫下接种AMF可使海州香薷叶片叶绿素含量显著增加;超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)活性显著提高;还原型谷胱甘肽(GSH)、抗坏血酸(As A)含量显著增加;MDA含量、MRP显著下降。总之,接种AMF可提高Cu胁迫下海州香薷叶片光合色素含量和抗氧化能力,降低膜脂过氧化水平,从而缓解Cu胁迫对植株造成的伤害,增强海州香薷对Cu胁迫的适应性,提高了植株的生物量。  相似文献   

13.
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on growth and drought tolerance of Poncirus trifoliata seedlings. The seedlings were inoculated with or without Glomus mosseae before exposure to a short-term (3 days) water depletion, and relevant physiological and biochemical parameters (plant height, chlorophyll content, relative water content, activity of antioxidant enzymes) and expression patterns of several stress-responsive genes were examined. Inoculation with G. mosseae led to growth promotion of the seedlings, as revealed by larger plant height and higher relative water and chlorophyll contents. When subjected to drought treatment, the AMF-inoculated (AM) plants showed better tolerance than the nonmycorrhizal (NAM) plants. Under drought, the AM plants exhibited higher level of proline and activity of two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD). In addition, mRNA abundance of four genes involved in reactive oxygen species homeostasis and oxidative stress battling was higher in the AM plants when compared with the NAM plants. These results indicate that AMF inoculation stimulated growth and enhanced drought tolerance of the seedlings, which may be due to activation of an arsenal of physiological, biochemical and molecular alterations.  相似文献   

14.
Cassia italica Mill is an important medicinal plant within the family Fabaceae. Pot experiment was conducted to evaluate cadmium stress induced changes in physiological and biochemical attributes in C. italica with and without arbuscular mycorrhizal fungi (AMF). Cadmium stressed plant showed reduced chlorophyll pigment and protein content while AMF inoculation enhanced the chlorophyll and protein content considerably. AMF also ameliorated the cadmium stress induced reduction in total chlorophyll and protein contents by 19.30% and 38.29%, respectively. Cadmium stress enhanced lipid peroxidation while AMF inoculation reduced lipid peroxidation considerably. Increase in proline and phenol content was observed due to cadmium stress and AMF inoculation caused a further increase in proline and phenol content ensuring better growth under stressed conditions. AMF alone also enhanced proline and phenol content. Activity of antioxidant enzymes enhanced under cadmium treatment and AMF inoculation further enhanced their activity thereby strengthening the antioxidant system. Enhanced activities of antioxidants and increased accumulation of osmolytes help plants to avoid damaging impact of oxidative damage. The research has shown that AMF inoculation mitigated the negative impact of stress by reducing the lipid peroxidation and enhancing the antioxidant activity. The present study strongly supports employing AMF as the biological mean for enhancing the cadmium stress tolerance of C. italica.  相似文献   

15.
A field study of Pb/Zn mine tailings was conducted to assess the influence of AM fungi and refuse compost on phytoremediation using vetiver grass slips. Our investigation revealed that vetiver could thrive on Pb/Zn mine tailings. The addition of refuse compost resulted in biomass that was more than 3-times higher when compared with the control, and were mainly attributed to an improvement of soil properties, as well as better nutrient supply than untreated control. AMF inoculation also significantly increased the dry matter of vetiver by a rate of 8.1-13.8%. It was observed that concentrations of N and P in the shoots were significantly higher in mycorrhizal treatments than those without AMF inoculation. However, AMF inoculation significantly decreased the metal concentrations in root, but not in shoot. Based on the results, it seems clear that AMF can play an essential role in the phytostabilization of metal contaminated soils.  相似文献   

16.
This article reviews recent developments in in situ bioremediation of trace metal contaminated soils, with particular reference to the microbial dynamics in the rhizospheres of plants growing on such soils and their significance in phytoremediation. In non-agricultural conditions, the natural role of plant growth promoting rhizobacteria (PGPR), P-solubilizing bacteria, mycorrhizal-helping bacteria (MHB) and arbuscular mycorrhizal fungi (AMF) in maintaining soil fertility is more important than in conventional agriculture, horticulture, and forestry where higher use of agrochemicals minimize their significance. These microbes initiate a concerted action when a particular population density is achieved, i.e. quorum sensing. AMF also recognize their host by signals released by host roots, allowing a functional symbiosis. AM fungi produce an insoluble glycoprotein, glomalin, which sequester trace elements and it should be considered for biostabilization leading to remediation of contaminated soils. Conclusions drawn from studies of metal uptake kinetics in solution cultures may not be valid for more complex field conditions and use of some combination of glasshouse and field experiments with organisms that occur within the same plant community is suggested. Phytoextraction strategies, such as inoculation of plants to be used for phytoremediation with appropriate heavy metal adapted rhizobial microflora, co-cropping system involving a non-mycorrhizal hyperaccumulator plant and a non-accumulator but mycorrhizal with appropriate AMF, or pre-cropping with mycotrophic crop systems to optimize phytoremediation processes, merit further field level investigations. There is also a need to improve our understanding of the mechanisms involved in transfer and mobilization of trace elements by rhizosphere microbiota and to conduct research on selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. This is necessary if we are to improve the chances of successful phytoremediation.  相似文献   

17.
This article reviews recent developments in in situ bioremediation of trace metal contaminated soils, with particular reference to the microbial dynamics in the rhizospheres of plants growing on such soils and their significance in phytoremediation. In non-agricultural conditions, the natural role of plant growth promoting rhizobacteria (PGPR), P-solubilizing bacteria, mycorrhizal-helping bacteria (MHB) and arbuscular mycorrhizal fungi (AMF) in maintaining soil fertility is more important than in conventional agriculture, horticulture, and forestry where higher use of agrochemicals minimize their significance. These microbes initiate a concerted action when a particular population density is achieved, i.e. quorum sensing. AMF also recognize their host by signals released by host roots, allowing a functional symbiosis. AM fungi produce an insoluble glycoprotein, glomalin, which sequester trace elements and it should be considered for biostabilization leading to remediation of contaminated soils. Conclusions drawn from studies of metal uptake kinetics in solution cultures may not be valid for more complex field conditions and use of some combination of glasshouse and field experiments with organisms that occur within the same plant community is suggested. Phytoextraction strategies, such as inoculation of plants to be used for phytoremediation with appropriate heavy metal adapted rhizobial microflora, co-cropping system involving a non-mycorrhizal hyperaccumulator plant and a non-accumulator but mycorrhizal with appropriate AMF, or pre-cropping with mycotrophic crop systems to optimize phytoremediation processes, merit further field level investigations. There is also a need to improve our understanding of the mechanisms involved in transfer and mobilization of trace elements by rhizosphere microbiota and to conduct research on selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. This is necessary if we are to improve the chances of successful phytoremediation.  相似文献   

18.
The aim of this work was to isolate PAH degrading-bacteria from contaminated Patagonia soil with the ability to tolerate the usual environmental stresses (oligotrophic and dryness conditions). Two approaches were utilized to obtain PAH-degrading bacteria from the Patagonian soil. With a traditional enrichment approach only the PAH- degrading strain 36 was isolated. Using a direct isolation approach three PAH-degrading strains (1A, 22A and 22B) were isolated. The phylogenetic analysis revealed that all isolates belonged to Sphingomonas genus. The PAH degrading activity and the resistance to stress conditions of the strains were determined and compared with those of the exogenous PAH-degrading Sphingomonas paucimobilis 20006FA. The strains 1A, 22A and 36 were phylogenetically closely related between them and with the strain 20006FA. The strain 22B, that showed a different phylogenetic position, was more resistant to C-starvation and drying conditions than other Patagonian strains. The effect of the inoculation of these strains on phenanthrene-induced mineralization and elimination was studied in Patagonian soil artificially contaminated, at different environmental conditions. The results suggest that strain 22B is the most suitable strain for bioaugmentation in PAH-contaminated soils of Central Patagonia, due to its adaptation to the usual environmental conditions. Our results show the importance of a detailed physiological characterization of isolates for autochthonous bioaugmentation strategies success.  相似文献   

19.
Background and aimArbuscular mycorrhizal fungi (AMF) have an important role in plant-microbe interactions. But, there are few studies in which the combined effect of AMF with a stress factor, such as the presence of a metal, on plant species were assessed. This study investigated the effect of arbuscular mycorrhizal (AM) fungus Rhizophagus intraradices and other soil microbial groups in the presence of copper on three plant species in a microcosm experiment.MethodsTwo grass species Poa compressa and Festuca rubra and one herb species Centaurea jacea were selected as model plants in a pot-design test in which soils were artificially contaminated with copper. Treatments were bacteria (control), saprophytic fungi, protists, and a combined treatment of saprophytic fungi and protists, all in the presence or absence of the AM fungal species. After sixty days, plants were harvested and the biomass of grass and herb species and microbial respiration were measured.ResultsThe results showed almost equal above- and belowground plant biomass and microbial respiration in the treatments in the presence or absence of R. intraradices. The herb species C. jecea responded significantly to the soil inoculation with AM fungus, while grass species showed inconsistent patterns. Significant effect of AMF and copper and their interactions was observed on plant biomass when comparing contaminated vs. non-contaminated soils.ConclusionStrong effect of AMF on the biomass of herb species and slight changes in plant growth with the presence of this fungal species in copper-spiked test soils indicates the importance of mycorrhizal fungi compared to other soil microorganisms in our experimental microcosms.  相似文献   

20.
In the current study, we investigated the impact of inoculation with a selected indigenous arbuscular mycorrhizal fungi (AMF) complex on the growth and physiology of carob plants at increasing levels of watering (25, 50, 75 and 100% field capacity). The following growth and stress parameters were monitored in carob seedlings after 6 months of growth and 2 months of applied drought stress: fresh and dry weight, root and shoot lengths, leaf surface area, relative water content, stomatal conductance and membrane stability. Chlorophyll a and b, total soluble sugars, proline and protein contents were also determined along with the activities of stress enzymes: Catalase, Peroxidase and Superoxide dismutase. The obtained results indicate that inoculation with the indigenous AMF complex has a positive impact on the plant’s growth as all the assessed parameters were significantly improved in the mycorrhizal plants. Additionally, our results show that mycorrhization contributes to the minimization of the impact of drought stress on the carob plants and allows a better adaptation to dry conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号