首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment investigating the removal and/or uptake of Polycyclic Aromatic Hydrocarbons (PAHs) and specific metals (As, Cd, Cr) from a crude oil polluted agricultural soil was performed during the 2013 wet season using four plant species: Fimbristylis littoralis, Hevea brasilensis (Rubber plants), Cymbopogom citratus (Lemon grass), and Vigna subterranea (Bambara nuts). Soil functional diversity and soil-enzyme interactions were also investigated. The diagnostic ratios and the correlation analysis identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs at the study site. A total of 16 PAHs were identified, 6 of which were carcinogenic. Up to 42.4 mg kg?1 total PAHs was recorded prior to the experiments. At 90 d, up to 92% total PAH reduction and 96% As removal were achieved using F. littoralis, the best performing species. The organic soil amendment (poultry dung) rendered most of the studied contaminants unavailable for uptake. However, the organic amendment accounted for over 70% of the increased dehydrogenase, phosphatase, and proteolytic enzymes activities in the study. Overall, the combined use of soil amendments and phytoremediation significantly improved the microbial community activity, thus promoting the restoration of the ecosystem.  相似文献   

2.
Dissipation of petroleum contaminants in the rhizosphere is likely the result of enhanced microbial degradation. Plant roots may encourage rhizosphere microbial activity through exudation of nutrients and by providing channels for increased water flow and gas diffusion. Phytoremediation of crude oil in soil was examined in this study using carefully selected plant species monitored over specific plant growth stages. Four sorghum (Sorghum bicolor L.) genotypes with differing root characteristics and levels of exudation were established in a sandy loam soil contaminated with 2700 mg crude oil/kg soil. Soils were sampled at three stages of plant growth: five leaf, flowering, and maturity. All vegetated treatments were associated with higher remediation efficiency, resulting in significantly lower total petroleum hydrocarbon concentrations than unvegetated controls. A relationship between root exudation and bioremediation efficiency was not apparent for these genotypes, although the presence of all sorghum genotypes resulted in significant removal of crude oil from the impacted soil.  相似文献   

3.
As toxic pollutants commonly found in tobacco (Nicotiana tabacum L.) products, lead (Pb) and cadmium (Cd) can enter the human body via smoking and thus pose a potential health risk to smokers. We conducted a greenhouse experiment to study the effects of arbuscular mycorrhizal (AM) inoculation with Glomus intraradices BEG 141 and organic amendment with cattle manure, alone or in combination, on the growth, P nutrition, and heavy-metal uptake by tobacco plants grown in soil to which was added Pb-Cd at 0/0, 350/1, 500/10, and 1,000/100?mg?kg?1, respectively. In general, AM colonization and plant growth were greatly reduced by Pb-Cd contamination, whereas organic amendment alleviated Pb-Cd stress and showed some beneficial effects on AM symbiosis and some soil parameters. AM inoculation, alone or in combination with organic amendment, increased plant dry weights and improved P nutrition significantly at all Pb-Cd addition levels, and, in most cases, it decreased Pb and Cd concentrations in tobacco plants and DTPA-extractable concentrations in soil. AM inoculation increased total glomalin-related soil protein (GRSP) concentrations in soil to which Pb-Cd was added. The higher soil pH and GRSP contents and the lower DTPA-extractable Pb and Cd concentrations contributed by AM inoculation and/or organic amendment may be contributing factors that lead to higher growth promotion and lower metal toxicity and uptake by plants. Our findings suggest that AM inoculation in combination with organic manure may be a potential method for not only tobacco production but phytostabilization of Pb-Cd-contaminated soil.  相似文献   

4.
Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.  相似文献   

5.
The aim of the research was to study a removal of polycyclic aromatic hydrocarbons (PAHs) and phytoextraction of bromine (Br) from contaminated soils. The experiments using pea and wheat seedlings as potential candidates for soil remediation were performed. The soil for the experiments was collected from a site slightly contaminated by some PAHs. Before planting, the soil was exposed to 20 mg of Br/kg of soil. In the soil taken from rhizosphere of pea and wheat, the concentrations of many PAHs decreased up to 7 times compared to the concentrations of the compounds in the initial soil. Pea was capable of more effectively influencing the soil PAHs than wheat. The growth of pea and wheat in the soil spiked with Br resulted in a significant increase of Br concentration in a plant. Concentration of Br in roots of pea and wheat increased 21 and 3 times, respectively. Bromine content in leaves of wheat and pea increased 10 and 4.5 times. This accumulation of Br in the plants led to a decrease of its concentration in the rhizosphere soil. The experimental results demonstrated a good ability of the plants to cleanup the soils contaminated with organic and inorganic compounds.  相似文献   

6.
The influence of biostimulation using dissolved organic carbon (DOC) on rhizodegradation of perchlorate and plant uptake was studied under greenhouse conditions using soil and hydroponic bioreactors. One set of bioreactors planted with willow (Salix babylonica) plants was spiked with 300 mg L?1 DOC in the form of chicken manure extract, whereas a second set was not treated with DOC. A similar experiment without willow plants was run in parallel to the planted bioreactors. The planted soil bioreactors amended with DOC reduced perchlorate from 65.85 to 2.67 mg L?1 in 21 days for humic soil (95.95% removal) and from 68.99 to 0.06 mg L? 1 for sandy loam (99.91% removal) in 11 days. Nonplanted DOC treated soil bioreactors achieved complete perchlorate removal in 6 and 8 days for humic and sandy loam, respectively. Both planted and nonplanted soil bioreactors without DOC removed > 95% perchlorate within 8 days. Planted soil bioreactors respiked with perchlorate reduced perchlorate to nondetectable levels in 6 days. Hydroponics experiment amended with DOC reduced perchlorate from approximately 100 mg L? 1 to nondetectable levels within 7 to 9 days. Hydroponic bioreactors without DOC had low perchlorate removal rates, achieving 30% removal in 42 days. Leaf samples from sandy loam soil bioreactors without DOC had four times perchlorate phytoaccumulation than the DOC-treated plants. Similar results were obtained with the nonplanted bioreactors. Persistence of perchlorate in solution of planted hydroponic bioreactors without DOC amendment suggested that natural DOC from the plant exudates was not enough to biostimulate perchlorate reducing microbes. The hydroponic bioreactor study provided evidence that DOC is a limiting factor in the rhizodegradation of perchlorate.  相似文献   

7.
Pot experiments were carried out in the green house at Amhara Regional Agriculture Research Institute (ARARI) Bahirdar, Ethiopia, to evaluate the potential of Brassica carinata cultivars, namely Holleta-l, S-67 and Yellow Dodola in 2007 and 2008. The effect of B. carinata (Ethiopian mustard) cultivars Holleta-1, S-67 and Yellow Dodola as green manure and Holleta-1 as dried plant residue on chickpea fusarium wilt (Fusarium oxysporum f.sp. ciceris) was studied. Six rates of green manure and dried plant residue (0, 20, 40, 60, 80 and 100 g) each per kg of pathogen-infested soil were used in the experiments. Infested soil without B. carinata cultivars amendment as a control and susceptible check variety JG-62 without amendment was used in the experiments. In the experiments, the treatments were arranged in randomised complete block design in three replications and repeated twice. Data on seedling emergence, wilt incidence, fresh weight and dry weight were collected. The amendments of infested soil with B. carinata cultivars green manure and dried plant residue reduced the incidence of chickpea fusarium wilt. The incorporation of the green manure Holleta-1, S-67 and Yellow Dodola at 20–100 g/kg of infested soil was effective in reducing wilt incidences on chickpea. However, the incorporation of Yellow Dodola at 80 and 100 g green manure per kg of infested soil were the best combination in reducing significantly wilt incidence. The application of the dried plant residue at 20–100 g/kg of infested soil was effective in reducing wilt incidences on chickpea. However when applied dried plant residue at 60, 80 and 100 g green manure per kg of infested soil were better in reducing wilt incidence as compared to 20 and 40 g/kg of infested soil. The three cultivars green manure incorporated at different level of doses affected the influence of fusarium wilt on the fresh and dry weight respectively. The use of Holleta-1 green manure at 20–100 g/kg of infested soil significantly reduced disease incidence in the range of 20.0–33.3%. Green manure amendment S-67 significantly reduced disease incidence in the range of 20.0–46.6%. Yellow Dodola reduce disease incidence with 26.7–60%. The dried plant residue incorporated at different level influence fusarium wilt. The application of Holleta-1 dried plant residue at 20–100 g/kg of infested soil reduced disease incidence in the range 20.0–26.7%. The results imply the potential of using B. carinata green manure and dried plant residue as cultural management components in chickpea fusarium wilt disease management.  相似文献   

8.
An experiment was conducted in field for three years to assess the sustainability of aquatic plants Leersia hexandra, Cyperus articulatus, and Eleocharis palustris for use in the removal of total hydrocarbons of weathered oil in four areas contaminated with 60916–119373 mg/kg of hydrocarbons. The variables evaluated were coverage of plant, dry matter, density of plant growth-promoting rhizobacteria, and the removal of total weathered oil. The variables showed statistical differences (p = 0.05) due to the effects of time and the amount of oil in the soil. The three aquatic plants survived on the farm during the 36-month evaluation. The grass L. hexandra yielded the greatest coverage of plant but was inhibited by the toxicity of the oil, which, in contrast, stimulated the coverage of C. articulatus. The rhizosphere of L. hexandra in control soil was more densely colonized by N-fixing bacteria, while the density of phosphate and potassium solubilizing rhizobacteria was stimulated by exposure to oil. C. articulatus coverage showed positive relationship with the removal of weathered oil; positive effect between rhizosphere and L. hexandra grass coverage was also identified. These results contributed to the removal of weathered oil in Gleysols flooded and affected by chronic discharges of crude oil.  相似文献   

9.
The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) have been isolated from the rhizospheres of plant species with varied biological traits; however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds—morin, caffeic acid, and protocatechuic acid—appear to be linked to bacterial degradation of 3- and 4-ring PAHs in the rhizosphere.  相似文献   

10.
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)与根围促生细菌(plant growth-promoting rhizobacteria,PGPR)联合降解有毒有机物、修复污染土壤和促进植物生长的作用倍受关注。本试验旨在探究AMF与PGPR联合降解土壤中菲和芘的效应,以菲和芘1:1混合处理浓度各0、50mg/kg、100mg/kg和150mg/kg下对高羊茅Festuca elata接种AMF根内根孢囊霉Rhizophagus intraradices(Ri)、变形球囊霉Glomus versiforme(Gv)、PGPR荧光假单胞菌Pseudomonas fluorescens Ps2-6、芽孢杆菌Bacillus velezensis Ps3-2、Ri+Ps2-6、Ri+Ps3-2、Gv+Ps2-6、Gv+Ps3-2和不接种对照共36个处理。结果表明,供试AMF增加了PGPR的定殖数量;接种PGPR则显著提高AMF的侵染率。AMF、PGPR或AMF+PGPR处理均显著降低土壤中菲和芘含量,促进植物对土壤中菲和芘的吸收,显著提高高羊茅根系和叶片内的菲和芘含量。在土壤中菲和芘100mg/kg和150mg/kg水平下,Gv与Ps2-6及Ri与Ps2-6能相互促进对土壤中菲和芘的去除效应,其中接种Gv+Ps2-6组合处理的去除率最高,达到95%-98%,土壤中多酚氧化酶、脱氢酶和过氧化氢酶活性显著高于单接种处理和不接种对照,而酸性磷酸酶活性变化则表现为相反趋势。其中以Gv+Ps2-6组合处理的多酚氧化酶活性最高,为0.17mg/g,是不接种对照的1.9倍;脱氢酶和过氧化氢酶活性分别达到1.32µg/(g·h)和1.81mL/g;酸性磷酸酶活性则比不接种对照土壤降低27%-45%;易提取球囊霉素相关土壤蛋白含量和总球囊霉素相关土壤蛋白含量分别是不接种对照的1.6倍和1.5倍。  相似文献   

11.
The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.  相似文献   

12.
不同施肥黑土微生物量氮变化特征及相关因素   总被引:30,自引:3,他引:27  
研究长期施用两种不同量有机肥(M2、M4)和化肥(NPK)的黑土微生物量N在作物生长季的变化特征.结果表明,施用有机肥黑土微生物量N显著高于施用化肥(NPK)和不施肥(CK),微生物量N季节波动小.微生物量N为M4 25.52~239.12mg·kg^-1,M2 10.40~94.31mg·kg^-1.NPK6.27~87.04mg·kg^-1,CK9.15~69.81mg·kg^-1,同一处理最大值与最小值相差7~14倍.M2、NPK处理微生物量N最大值出现在抽雄吐丝期,M4处理最大值出现在拔节期,CK处理最大值出现在播种期;不同处理微生物量N的差异并未因季节变化及玉米生育时期影响而明显改变.微生物量N的动态变化与极少数黑土生物、理化特性指标动态变化显著相关;微生物量N与黑土生物、理化特性,植物氮、磷、钾有极显著的正相关关系,与土壤含水量、籽粒粗蛋白含量呈显著正相关关系.  相似文献   

13.
The impact of crude oil-contaminated soil on the shoot and root biomass yield and nutrients uptake of Calopogonium mucunoides Desv. using two types of composted manure (COM) as soil amendments were investigated. This was with a view to assessing the growth response of the test plant under different levels of crude oil soil contamination. Five levels [0, 2.5, 5, 10, and 20% (v/v)] of crude oil, each was replicated thrice to contaminate 3 kg of soil when 12 g pot?1 COM; 12 g pot?1 neem-fortified composted manure (NCM) and control, soil without manure application (C) were imposed as manure treatments. The mean fresh shoot biomass yield at zero crude oil soil contamination and with COM application was 2.67 g pot?1. This value was significantly (p < 0.05) higher than 2.05 g pot?1 for NCM and 1.67 g pot?1 for the control. Also, the mean fresh root yield at zero crude oil soil contamination with COM application was 4.02 g pot?1. This value was significantly (p < 0.05) higher than 2.41 g pot?1 for NCM and 1.71 g pot?1 for the control. The dry shoot and root biomass yield followed similar pattern. The shoot and root yield of C. mucunoides significantly (p < 0.05) reduced with increase in crude oil soil contamination. The nutrients uptake of C. mucunoides, particularly N, P, Ca, Mg, and Fe, were enhanced with COM fertilization having higher available P, K, and Na values; and by implication, suggesting the importance of adequately formulated composted manure usage in the rehabilitation studies of crude oil-contaminated soil.  相似文献   

14.
The effect of fertilizer as an amendment in the bioremediation of a terrestrial crude oil spill has been investigated in terms of the subsequent recovery of the soil ecosystem following bioremediation. Two different spills in the same area with different initial hydrocarbon concentrations (33,500 mg kg-1 and 4,800 mg kg-1) were compared. At the higher initial hydrocarbon concentration fertilizer addition increased the rate of bioremediation (first-order rate constant of 0.0033 days-1 with fertilizer amendment vs. 0.0020 days-1 without) and resulted in more rapid recovery of soil bacteria (numbers, community structure, diversity) and nematodes (trophic diversity and community structure). The effect of the fertilizer amendment was more significant at the higher initial concentration of crude oil hydrocarbons, presumably due to greater depletion of soil nutrient pools in the absence of the amendment. A second objective of this work was to identify sensitive and cost-effective ecological indicators useful for monitoring the recovery of soil ecosystems impacted by crude oil. Ecological indicators used included: microbial numbers, community structure, and activity as revealed by biomarker analysis (phospholipid fatty acids); nitrogen availability; nematode numbers and community structure (trophic groups and colonizer-persister classes); and ultimately, plant cover and diversity. All ecological indicators investigated were sensitive to disturbances in the soil food web in a hydrocarbon-impacted site. However, nematode community structure analysis offered the greatest sensitivity coupled with low cost and readily available sources for the analysis.  相似文献   

15.
Using the perspective of full scale application of phytoremediation techniques, research is focusing on the optimization of agronomic practices. Two annual high biomass yield crops, Sorghum bicolor and Helianthus annuus, were grown in a polymetallic soil. The experimental site, polluted by pyrite cinders, is located in an industrial site that has been listed in the clean-up national priority list since 2001. Specific aims of this work were to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removed by the crops. The field trial, arranged in a randomized block design, started in 2005. The concentrations of heavy metals in the soil were: As 309, Cd 4.29, Co 50.9, Cu 1527 and Zn 980mg kg(-1). The crops grown on the polluted soil received mineral fertilization (Fert) and organic amendment (Org), while plants in control soil (Ctrl) did not receive anything. The plots were watered during the crop cycle during two drought periods, using a sprinkler irrigation system. The phytoextraction potential of crops was estimated during the whole growth cycle and the plant biomass that was collected in each sampling date was ICP-analyzed. Plant-biomass growth curves were obtained. The concentrations of the metals in the shoots and in the total plant biomass were recorded. Finally, the metal removal was calculated for the harvestable parts of the crops. The amelioration of the nutritive status of the substrate that resulted, was highly effective for the biomass yield. However, fertilization and soil amendment did not heighten the concentration of metals in the harvestable tissue of the plants during the crop cycle. In some cases, organic matter appeared to bind the elements making them less available for the plants. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal was positive. Our results of metal removal are consistent with the results from other in situ experiments. The Zn removal by S. bicolor and H. annuus reached about 2000g ha(-1) and 1000g ha(-1), respectively.  相似文献   

16.
Garden angelica (Archangelica officinalis L.) tolerance to the action of Urals crude oil was studied. It was established that, at the oil dose up to 30 g/kg of soil, plant weight was increased and the photosynthetic apparatus was activated. Garden angelica manifested tolerance to oil dose up to 60 g/kg. It is proposed to use this plant for remediation of areas contaminated with oil products.  相似文献   

17.
In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were naphthalene, methyl-naphthalene, acenaphthene, acenaphthylene, and carbazole. The gasoline hydrocarbons included benzene, toluene, ethyl benzene, and p-xylene (BTEX). Two porous pot reactors were operated for a period of 10 months under the same influent contaminant concentrations. The contaminated groundwater was introduced into the reactors at a flow rate of 4 and 9 l/day, resulting in a hydraulic retention time (HRT) of 32 and 15 h, respectively. In both reactors, high removal efficiencies were achieved for the PAHs (>99%), BTEX and MtBE (>99.7%). All the PAHs of interest and the four BTEX compounds were detected at concentrations less than 1 μg/l throughout the study duration. Effluent MtBE from both reactors was observed at higher levels; nevertheless, its concentration was lower than the 5 μg/l Drinking Water Advisory for MtBE implemented in California.  相似文献   

18.
Phytoremediation is a nondestructive, cost-effective in-situ technology to clean up contaminated soils. In the case of contamination with petroleum hydrocarbons, plants enhance microbial degradation of the contaminant in the rhizosphere. The potential of this technology for the tropics should be high due to prevailing climatic conditions favoring plant growth and stimulating microbial activity. Investigations of the potential of tropical plants for phytoremediation, however, are scarce. The present work studied two grasses and six legumes from the eastern savannah of Venezuela on their reaction to crude oil contamination in soil. Results shall help to identify plants with a potential for phytoremediation and subsequent studies. Seedling emergence and biomass production were determined for plants growing in soil contaminated with 0%, 3%, and 5% heavy crude oil. Contamination had, in general, a tendential but not significant negative influence on seedling emergence. Dry matter production was reduced by only a few percent to up to 85%. Furthermore, in some legumes inhibition of nodulation was observed. The grass Brachiaria brizantha and the legumes Centrosema brasilianum and Calopogonium mucunoides are promising for phytoremediation because in contaminated soil they combined high seedling emergence with least affected biomass production. Since they are cultivated forage/soil cover species also in other regions of the tropics, their potential for phytoremediation of petroleum contaminated soils extends beyond Venezuela.  相似文献   

19.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

20.
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg?1) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg?1) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21–72.84%, while that of the corresponding controls was only 25.85–34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号