首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unique sampling techniques have generated a new understanding regarding the fate of volatile organic compounds (VOCs) in phytoremediation systems. Tissue sampling and diffusion traps were used to determine how VOCs are transported in and diffuse from vegetation, particularly woody species. These techniques were then utilized to observe how plants interact with different contaminated media, showing transport of contaminants occurs from the vadose zone (vapor phase) as well as the saturated zone (aqueous phase). Data was gathered in laboratory studies, in native vegetation, and in engineered phytoremediation systems. The findings reveal that diffusion from the xylem tissues to the atmosphere is a major fate for VOCs in phytoremediation applications. Linking VOCs' fate with groundwater hydraulics, mass removal rates from contaminant plumes can be estimated. These techniques were also utilized to observe the impact of engineered plant/microbe systems, which utilize recombinant, root-colonizing organisms to selectively degrade compounds and subsequently alter the fate of VOCs and other organic compounds. The genetically enhanced rhizoremediation methods pose a novel approach that may allow for biodegradation of compounds that formerly were considered recalcitrant.  相似文献   

2.
Trichloroethylene (TCE) is a widespread and persistent environmental contaminant. Recently, plants, poplar trees in particular, have been investigated as a tool to remove TCE from soil and groundwater. The metabolism of TCE in plants is being investigated for two reasons: one, plant uptake and metabolism represent an important aspect of the environmental fate of the contaminant; two, metabolism pattern and metabolite identification will help assess the applicability of phytoremediation. It was previously shown that TCE metabolites in plants are similar to ones that result from cytochrome P450-mediated oxidation in mammals: trichloroethanol, trichloroacetate and dichloroacetate. Our measurements indicate that one of these metabolites, trichloroethanol, is further glycosylated in tobacco and poplar. The glycoside was detected in all tissues (roots, stems and leaves) in comparable levels, and was at least 10 fold more abundant than free trichloroethanol. The glycoside in tobacco was identified as the ss-D-glucoside of trichloroethanol by comparison of the mass spectra and the chromatographic retention time of its acetylation product to that of the synthesized standard. Trichloroethanol and its glucoside did not persist in plant tissue once plants are removed from TCE contaminated water, indicating further metabolism.  相似文献   

3.
Natural attenuation of trichloroethene (TCE) was evaluated for a groundwater plume at the Idaho National Engineering and Environmental Laboratory. Significant evidence demonstrated that reductive dechlori-nation is occurring, but is limited to a small area around the contamination source. In spite of this, the plume is relatively stable. Three first-order rate estimation methods were used to help understand transport processes affecting TCE in the large, aerobic portion of the plume. Two of the methods gave attenuation half-life estimates for TCE of approximately 8 years; however, these methods do not adequately distinguish between degradation and dispersion. The third method showed TCE attenuation relative to the co-contaminants, tritium and tetrachloroethene (PCE), and used these “tracers” to distinguish between dispersion and degradation. The estimated aerobic degradation half-life for TCE was between 13 and 21 years. Aerobic cometabolism of TCE has been identified as a potential mechanism for the apparent degradation. The importance of distinguishing between dispersion and degradation was shown using an analytical model. The model demonstrated that, in general, the rate of contaminant concentration decrease due to dispersion is not constant with time after the source is removed. This has important implications for predicting the long-term effectiveness of natural attenuation for groundwater restoration.  相似文献   

4.
The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.  相似文献   

5.
This research investigates the fate and transport of methyl tert-butyl ether (MTBE) in phytoremediation, particularly the uptake and volatilization of MTBE in lab-scale hydroponic systems. The research reveals that MTBE was taken up by hybrid poplar cuttings and volatilized to the atmosphere. Volatilization of MTBE occurred through both stems and leaves. The concentration of MTBE in the transpiration stream declined exponentially with height, indicating that the uptake and volatilization along the stems are an important removal mechanism of MTBE in phytoremediation. Volatilization, via diffusion from the stems, has not been directly measured previously. No volatile MTBE metabolites were detected; however, mass balance closure and metabolite detection were not primary objectives of this study. The greatest amount of MTBE in plant biomass was associated with the woody stems from the previous year's growth, owing in part to the large biomass of stems. MTBE in the plant tissues appears to reach a steady state concentration and there does not appear to be an accumulation process that could lead to highly elevated concentrations relative to the groundwater source.  相似文献   

6.
Abstract

Phytoremediation uses plants and associated microbes to remove pollutants from the environment and is considered a promising bioremediation method. Compared with well-described single contaminant treatments, the number of studies reporting phytoremediation of soil mixed pollutants has increased recently. Endophytes, including bacteria and fungi, exhibit beneficial traits for the promotion of plant growth, stress alleviation, and biodegradation. Moreover, endophytes either directly or indirectly assist host plants to survive high concentrations of organic and inorganic pollutants in the soil. Endophytic microorganisms can also regulate the plant metabolism in different ways, exhibiting a variety of physiological characteristics. This review summarizes the taxa and physiological properties of endophytic microorganisms that may participate in the detoxification of contaminant mixtures. Furthermore, potential biomolecules that may enhance endophyte mediated phytoremediation are discussed. The practical applications of pollutant-degrading endophytes and current strategies for applying this valuable bio-resource to soil phytoremediation are summarized.  相似文献   

7.
At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.  相似文献   

8.
A water dissolution model for solid-phase compounds in soil has been developed that is a variation of previous such models. The formulation for this model is presented along with comparison to previous formulations. The model is applied to experiments reported in the literature involving water dissolution of high explosive (HE) compounds and compared with those reported experimental results. This dissolution model is used in the TREECS? contaminant fate modeling system that was developed for predicting surface water and groundwater contaminant concentrations resulting from solid-phase contaminant particles deposited in soil. The dissolution model performed well against measured results for a single component HE (TNT), but input adjustments, primarily for initial particle size and solubility, were required for good agreement for multi-component HE formulations. These adjustments are presented.  相似文献   

9.
10.
The results of a pilot-scale phytoremediation study are reported in this paper. Small plots of trees established on a closed municipal waste landfill site were irrigated with recovered groundwater containing 1,4-dioxane (dioxane) and other volatile organic compounds (VOCs). The plots were managed to minimize the leaching of irrigation water, and leaching was quantified by the use of bromide tracer. Results indicated that the dioxane (2.5 μg/L) was effectively removed, probably via phytovolatilization, and that a full-scale phytoremediation system could be used. A system is now in place at the site in which the recovered groundwater can be treated using two different approaches. A physical treatment system (PTS) will be used during the winter months, and a 12 ha phytoremediation system (stands of coniferous trees) will be used during the growing season. The PTS removes VOCs using an air-stripper, and destroys dioxane using a photo-catalytic oxidation process. Treated water will be routed to the local sewer system. The phytoremediation system, located on the landfill, will be irrigated with effluent from the PTS air-stripper containing dioxane. Seasonal use of the phytoremediation system will reduce reliance on the photo-catalytic oxidation process that is extremely energy consumptive and expensive to operate.  相似文献   

11.
In field-scale mass balance studies of poplar remediation of carbon tetrachloride (CT), more than 95% of the mass of CT was degraded with all of the CT chlorine accountable as chloride ion accumulation in the soil. Atmospheric loss of CT through leaf transpiration and trunk diffusion was insignificant. These findings are consistent with previously reported uptake and degradation of trichloroethylene (TCE) by poplar. Poplar phytoremediation of CT and TCE results in little decrease in aqueous concentration, since water is taken up at about the same rate as the chlorinated compounds. From this result we predict that phytoirrigation--the application of pumped contaminated groundwater to planted systems--will result in concentrations of the pollutants at the bottom of the root zone that are higher than permitted regulatory levels. Such plantations will be susceptible to loss of contaminants during rainfall events, possibly resulting in pollution of uncontaminated soil. Greenhouse studies of pollutant profiles in the media beneath poplar trees that were surface irrigated with TCE and CT confirmed that regulatory concentrations of these pollutants were not achieved in the root zone of the poplar; rather concentrations fell by less than 50%.  相似文献   

12.
The phytoremediation of trichloroethylene (TCE) from contaminated groundwater has been extensively studied using the hybrid poplar tree (Populus spp.). Several metabolites of TCE have been identified in the tissue of poplar including trichloroethanol (TCEOH) and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA). In addition to the use of hybrid poplar for the phytoremediation of TCE, it is important to screen native tree species that could be successful candidates for field use. This study involves a greenhouse-based comparison of four different native southeastern conifers to a hybrid poplar species for their potential to phytoremediate TCE through the analysis of various plant tissues for TCE and major TCE metabolites, as well as several growth parameters that are desirable for phytoremediation. Longleaf pine (Pinus palustris), Leyland cypress (X Cupressocyparis leylandii), two varieties of Loblolly pine (Pinus taeda), and hybrid poplar species H11-11 (Populus trichocarpa x deltoides) were examined for the concentration of TCE and its metabolites in their tissue following treatment with either a low (50 mg L?1) or high dose of TCE (150 mg L?1) for 2 mo. The amount of water taken up, change in height of the tree, TCE transpiration, and total fresh weight of various tissue types were also measured. All trees contained detectable levels of TCE in their root and stem tissue. TCEOH was found only in the tissue of longleaf pine, suggesting that TCE metabolism was occurring in this tree. TCAA was only detected in the leaves of hybrid poplar and piedmont loblolly pine. Conifers took up less water over the 2-mo treatment period than hybrid poplar and grew at a slower rate. However, phytoremediation field sites may benefit from the evergreen's ability to transpire water throughout the winter months.  相似文献   

13.
In April 1996, a phytoremediation field demonstration site at the Naval Air Station, Fort Worth, Texas, was developed to remediate shallow oxic ground water (< 3.7 m deep) contaminated with chlorinated ethenes. Microbial populations were sampled in February and June 1998. The populations under the newly planted cottonwood trees had not yet matured to an anaerobic community that could dechlorinate trichloroethene (TCE) to cis-1,2-dichloroethene (DCE); however, the microbial population under a mature (approximately 22-year-old) cottonwood tree about 30 m southwest of the plantings had a mature anaerobic population capable of dechlorinating TCE to DCE, and DCE to vinyl chloride (VC). Oxygen-free sediment incubations with contaminated groundwater also demonstrated that resident microorganisms were capable of the dechlorination of TCE to DCE. This suggests that a sufficient amount of organic material is present for microbial dechlorination in aquifer microniches where dissolved O2 concentrations are low. Phenol, benzoic acid, acetic acid, and a cyclic hydrocarbon, compounds consistent with the degradation of root exudates and complex aromatic compounds, were identified by gas chromatography/mass spectrometry (GC/MS) in sediment samples under the mature cottonwood tree. Elsewhere at the site, transpiration and degradation by the cottonwood trees appears to be responsible for loss of chlorinated ethenes.  相似文献   

14.
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.  相似文献   

15.
The mutant methanotroph, Methylosinus trichosporium OB3b PP358, which constitutively expresses soluble methane monooxygenase (sMMO), was used to study the degradation kinetics of individual chlorinated solvents and binary solvent mixtures. Although sMMO's broad specificity permits a wide range of chlorinated solvents to be degraded, it creates the potential for competitive inhibition of degradation rates in mixtures because multiple chemicals are simultaneously available to the enzyme. To effectively design both ex-situ and in-situ groundwater bioremediation systems using strain PP358, kinetic parameters for chlorinated solvent degradation and accurate kinetic expressions to account for inhibition in mixtures are required. Toward this end, the degradation parameters for six prevalent chlorinated solvents and the verification of enzyme competition model for binary mixtures were the focus of this investigation. M. trichosporium OB3b PP358 degraded trichloroethylene (TCE), chloroform, cis-1,2-dichloroethylene (c-DCE), trans-1,2-dichloroethylene (t-DCE), and 1, 1-dichloroethylene (1,1-DCE) rapidly, with maximum substrate transformation rates of >20.8, 3.1, 9.5 24.8, and >7.5 mg/mg-day, respectively. 1,1,1-trichloroethane (TCA) was not significantly degraded. Half-saturation coefficients ranged from 1 to greater than 10 mg/L. Competition experiments were carried out to observe the effect of a second solvent on degradation rates and to verify the applicability of the Monod model adjusted for competitive inhibition. Binary mixtures of 0.3->0.5 mg/L TCE with up to 5 mg/L c-DCE and up to 7 mg/L 1,1,1-TCA were studied with 20 mM of formate and no growth substrate. No competition was observed at any of these concentrations. Additional competition experiments, using binary mixtures of t-DCE with TCE and t-DCE with c-DCE, were conducted at higher concentrations (i.e., 7-18 mg/L) and enzyme competition was observed. Predictions from a competitive inhibition model compared well with experimental data for these mixtures.  相似文献   

16.
Remediation goals for the source areas of a chlorinated ethene-contaminated groundwater plume were identified by assessing the natural attenuation capacity of the aquifer system. The redox chemistry of the site indicates that sulfate-reducing (H2 ∼ 2 nanomoles [nM]) per liter conditions near the contaminant source grade to Fe(III)-reducing conditions (H2 ∼ 0.5 nM) downgradient of the source. Sulfate-reducing conditions facilitate the initial reduction of perchloroethene (PCE) to trichloroethene (TCE), cis-dichloroethene (cis-DCE), and vinyl chloride (VC). Subsequently, the Fe(III)-reducing conditions drive the oxidation of cis-DCE and VC to carbon dioxide and chloride. This sequence gives the aquifer a substantial capacity for biodegrading chlorinated ethenes. Natural attenuation capacity (the slope of the steady-state contaminant concentration profile along a groundwater flowpath) is a function of biodegradation rates, aquifer dispersive characteristics, and groundwater flow velocity. The natural attenuation capacity at the Kings Bay, Georgia site was assessed by estimating groundwater flowrates (∼0.23±0.12 m/d) and aquifer dispersivity (∼1 m) from hydrologic and scale considerations. Apparent biodegradation rate constants (PCE and TCE ∼0.01 d-1; cis-DCE and VC ∼0.025 d-1) were estimated from observed contaminant concentration changes along aquifer flowpaths. A boundary-value problem approach was used to estimate levels to which contaminant concentrations in the source areas must be lowered (by engineered removal), or groundwater flow velocities lowered (by pumping) for the natural attenuation capacity to achieve maximum concentration limits (MCLs) prior to reaching a predetermined regulatory point of compliance.  相似文献   

17.
Phytoremediation in Wetland Ecosystems: Progress,Problems, and Potential   总被引:1,自引:0,他引:1  
Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season, and water chemistry. Conclusions about long-term phytoremediation potential are further complicated by the process of ecological succession in wetlands. This review of wetlands phytoremediation addresses the role of wetland plants in reducing contaminant loads in water and sediments, including metals; volatile organic compounds (VOC), pesticides, and other organohalogens; TNT and other explosives; and petroleum hydrocarbons and additives. The review focuses on natural wetland conditions and does not attempt to review constructed wetland technologies. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. The expansive rhizosphere of wetland herbaceous shrub and tree species provides an enriched culture zone for microbes involved in degradation. Redox conditions in most wetland soil/sediment zones enhance degradation pathways requiring reducing conditions. However, heterogeneity complicates generalizations within and between systems. Wetland phytoremediation studies have mainly involved laboratory microcosm and mesocosm technologies, with the exception of planted poplar communities. Fewer large-scale field studies have addressed remediation actions by natural wetland communities. Laboratory findings are encouraging with regards to phytoextraction and degradation by rhizosphere and plant tissue enzymes. However, the next phase in advancing the acceptance of phytoremediation as a regulatory alternative must demonstrate sustained contaminant removal by intact natural wetland ecosystems.  相似文献   

18.
Laboratory data from plant-mediated transformation of chlorinated and brominated alkanes, alkenes, and chlorinated pesticides, including phytotransformation data from field plants currently used in phytoremediation of trichloroethylene (TCE), were reviewed for the purpose of identifying important phytoprocesses and their respective roles in phytoremediation of halogenated organic compounds (HOCs). The results of the laboratory experiments indicated that the initial very rapid removal of hydrophobic HOCs from water or the gas phase by aquatic and terrestrial plants is primarily due to sequestration. The amount of HOC sequestered is controlled by the plant species and the physicochemical properties (e.g., Kow, aqueous solubility, volatility) of the contaminant. Phytodegradation studies conducted in both the gas and aqueous phases indicated that hexachloroethane (HCA) is dechlorinated to the same metabolites by sterilized and axenically cultivated aquatic plants and an isolated plant dehalogenase factor. Similar results were obtained in experiments conducted with o,p'-DDT and p,p'-DDT in aqueous solution. The sterilized and axenically cultivated aquatic plants also oxidized HCA to similar chloroacetic acids. The metabolism of HOCs to the corresponding oxidative and reductive transformation products identified in the plant rhizosphere, stems, and leaves suggested that more than one pathway, requiring different enzymes, may be involved in phytotransformation reactions. Four phytoprocesses (mechanisms) were found to be important in the removal of the probe HOCs from water by aquatic plants, namely, (1) rapid sequestration by partitioning to the lipophilic plant cuticles; (2) phytoreduction to less halogenated metabolites; (3) phytooxidation to haloethanols, haloacetic acids, and unidentified metabolites; and (4) assimilation into the plant tissues as nonphytotoxic products, presumably produced by covalent binding with the plant tissues. Laboratory and field data indicate that the distribution of metabolites of perchloroethylene (PCE) and TCE in cottonwood and willow trees is determined by the growth stage or age of these vascular plants, the plant species, and the duration of exposure to the compound. For terrestrial plants, the predominant phytoprocesses by which HOCs are attenuated in the environment include sequestration, rhizodegradation, uptake, phytodegradation, and phytovolatilization. Using PCE as a model chlorinated organic solvent, possible phytotransformation pathways are proposed to account for the different metabolites identified in the rhizosphere and tissues of laboratory and field plants. The proposed pathways also combine phytoreduction reactions that occur in plant tissues and are likely catalyzed by plant dehalogenase(s) for example, enzyme(s) such as glutathione-S-transferase and Fe-S clusters in chloroplast ferredoxin, with phytooxidation and covalent binding (phytoassimilation) reactions mediated by oxidative-enzymes (possibly cytochrome P-450 with monooxygenase activity, glutathione or laccase). Depending on the characteristics of the field site, the phytoprocesses identified in this study are vital in the design and implementation of phytoremediation of halogenated organic contaminants.  相似文献   

19.
Phytoremediation of organic pollutants has become a topic of great interest in many countries due to the increasing number of recorded spill sites. When applying plant remediation techniques to unknown pollutant mixtures, information on the uptake rates as well as on the final fate of the compounds is generally lacking. A range of compounds are easily taken up by plants, whereas others may stay motionless and recalcitrant in the soil or sediment. Uptake is a necessary prerequisite for close contact between the pollutant and the detoxifying enzymes of plants that are localized in the cytosol of living cells. The presence and activity of these enzymes is crucial for a potential metabolization and further degradation of the chemicals under consideration. Conjugation to biomolecules is regarded as a beneficial detoxification reaction. The present review summarizes several prerequisites for pollutant uptake and discusses information on conjugating detoxification reactions. The final fate of compounds is critically discussed and perspectives for phytoremediation are given.  相似文献   

20.
Polynuclear aromatic hydrocarbons (PAHs) typically exist as complex mixtures in contaminated soils, yet little is known about the biodegradation of PAHs in mixtures. We have isolated two physiologically diverse bacteria, Pseudomonas stutzeri P-16 and P. saccharophila P-15, from a creosote-contaminated soil by enrichment on phenanthrene as the sole carbon source and studied their ability to metabolize several other two- and three-ring PAHs. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene served as growth substrates for both organisms, while fluorene was only cometabolized. We also studied the effects of these compounds on initial rates of phenanthrene uptake in binary mixtures. Lineweaver-Burk analysis of kinetic measurements was used to demonstrate competitive inhibition of phenanthrene uptake by all four compounds, suggesting that multiple PAHs are being transformed by a common enzyme pathway in whole cells. Estimates of the inhibition coefficient, Ki, are reported for each compound. The occurrence of competitive metabolic processes in physiologically diverse organisms suggests that competitive metabolism may be a common phenomenon among PAH-degrading organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号