首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the concentrations of heavy metal (Cd, Pb, Fe, and Ni) in contaminated soils adjacent to two steel mill companies and in three crops (i.e., wheat, rice, and onion) grown in these regions were compared with a non-industrial site in Isfahan province, central Iran. The results were manifold. The heavy metal concentrations of both the soil and crops within the two industrial regions turned out to be more significant than the nonindustrial counterpart. In addition, the soils surrounding the companies were demonstrated to be contaminated by Cd, Pb, and Ni according to the limits provided by the international standards (i.e., USEPA and European Union standards). As for the crops from the investigated contaminated sites, the mean concentrations of Cd, Ni, and Pb exceeded the maximum permissible levels for human consumption stipulated by FAO/WHO standards. Furthermore, the values gained from the target hazard quotient were above one, meaning that the crops are contaminated. Given the results gained from a comparison made between estimated daily intake and tolerable daily intake, it can be concluded that the inhabitants of the two investigated contaminated sites are at a potentially serious health risk caused by exposure to the crops contaminated with the heavy metal.  相似文献   

2.
Pollution of agricultural land by heavy metals has imposed an increasingly serious risk to environmental and human health in recent years.Heavy metal pollutants may enter the human food chain through agricultural products and groundwater from the polluted soils.Progress has been made in the past decade on phytoremediation,a safe and inexpensive approach to remove contaminants from soil and water using plants.However,in most cases,agricultural land in China cannot afford to grow phytoremediator plants instead of growing crops due to food supply for the great population.Therefore,new and effective methods to decrease the risk of heavy metal pollution in crops and to clean the contaminated soils are urgently needed.If we can find crop germplasms (including species and varieties) that accumulate heavy metals in their edible parts,such as the leaves of vegetables or grains of cereals,at a level low enough for safe consumption,then we can grow these selected species or varieties in the lands contaminated or potentially contaminated by heavy metals.If we can find crop germplasms that take in low concentrations of heavy metals in their edible parts and high content of the metals in their inedible parts,then we can use these selected species or varieties for soil remediation.In this study,the feasibility of the method is assessed by analyzing Pb concentrations in edible and inedible parts of 25 varieties of maize (Zea mays) grown in Pb-contaminated soils.The soil concentrations of Pb were 595.55 mg/kg in the high Pb exposed treatment and 195.55 mg/kg in the control.The results showed that the Pb concentrations in different tissues were in the order of root > shoot ≌ leaf> grain.Compared with the control,the Pb concentrations in root,shoot and leaf were greatly increased under the high Pb exposed condition,while the increments of Pb concentration in grain were relatively lower.Under the high Pb exposure,the grain Pb concentrations of 12 varieties exceeded the maximal Pb limitation of the National Food Hygiene Standard of China (NFHSC) and were inedible.This indicates that there is a high Pb pollution risk for maize grown on Pb polluted sites.Although 22 of the 25 tested varieties had harvest loss under the highly Pb stressed condition,ranging from 0.86%-38.7% of the grain biomass acquired at the control,the average harvest loss of all the tested varieties was only 12.6%,which is usually imperceptible in normal farming practices.Therefore the risk of Pb pollution in maize products cannot be promptly noticed and prevented based only on the outcome of the harvest.However,we did find that 13 of the 25 tested varieties had grain Pb concentrations lower than the limitation of the NFHSC.It is,therefore,possible to reduce the pollution risk if these favorable varieties are used for maize production in Pb-contaminated or potentially contaminated agricultural lands.Pb concentrations in vegetative tissues (root,stem and leaf) were significantly correlated with each other,while Pb concentrations of each vegetative tissue were not significantly correlated with that of grain.Among the 25 tested varieties,some varieties had Pb concentrations in grain lower than (No.1-3 and No.6) or slightly above (No.4) the limitation of the NFHSC,while their Pb concentrations in the vegetative tissues were among the highest.When excluding these varieties,correlations between the Pb concentrations of grain and those of vegetative tissues of the rest of the tested varieties became highly significant.In addition,variety No.1 had the lowest harvest loss under high Pb exposed,and the highest Pb accumulation in vegetative tissues (51.69 mg/plant,12 times as much as in the control).Similar features were also observed in varieties No.2,No.3 and No.6,which absorbed Pb for 36-42 mg/plant under high Pb exposed.We recommend these varieties of maize to be used for bioremediation of Pb contaminated soil and crop production at the same time.  相似文献   

3.
Effect of heavy metals on peppermint and cornmint   总被引:9,自引:0,他引:9  
Heavy metal pollution of agricultural soils and air is one of the most severe ecological problems on a world scale and in Bulgaria in particular. The biggest sources of pollution in Bulgaria are some non-ferrous metals smelters, such as the Non-Ferrous Metals Combine (NFMC) near Plovdiv, situated on very fertile soils. Vegetable, arable and animal production in this area results in contaminated produce with excessive amounts of Cd, Pb, Cu, Mn and Zn.In order to discover some crops which could be grown on these areas without contamination of the end product, we conducted (in 1991–1993) field experiments in the vicinities of NFMC near Plovdiv. As experimental material we used Mentha piperita L. (cv Tundza and Clone No 1) and Mentha arvensis var piperascens Malinv. (cv Mentolna-14). Plants have been grown on three Plots: Plot No 1-at a distance of 400 m from the source of pollution; Plot No 2-at 3 km from the source of pollution and on a control Plot-in the experimental gardens of University of Agriculture in Plovdiv, at 10 km from the source of pollution. It was established that heavy metal pollution of soil and air at a distance of 400 m from the source of pollution decreased the yields of fresh herbage by 9–16% and the yield of essential oil by up to 14% compared to the control, but did not negatively affect the essential oil content and its quality.Oils obtained from Plot 1 at a distance of 400 m from the source of pollution have not been contaminated with heavy metals.Cultivar response to heavy metal pollution was established. A positive correlation between Pb concentration in leaves and in essential oil was found.Heavy metal concentration in the plant parts was found to be in order: for Cd roots > leaves > rhizomes > stems; Pb roots = leaves > rhizomes = stems; Cu roots > rhizomes = stems = leaves; Mn roots > leaves > stems = rhizomes; Zn leaves > roots > stems = rhizomes.The tested cultivars of peppermint and cornmint could be successfully grown in highly heavy metal polluted areas, as in the area around NFMC near Plovdiv, without contamination of the end product-the essential oils.Despite of the yield reduction (up to 14%), due to heavy metal contamination, mint still remained a very profitable crop and it could be used as substitute for the other highly contaminated crops.  相似文献   

4.
玉米各器官积累Pb能力的品种间差异   总被引:14,自引:0,他引:14       下载免费PDF全文
为了研究不同玉米(Zea mays)品种及不同器官对Pb积累能力的差异,在土壤Pb含量为595.55 mg·kg-1 的高Pb胁迫和含量为195.55 mg·kg-1的低Pb胁迫(对照)条件下,采用盆栽试验结合火焰原子吸收等方法,测定了25个玉米品种各器官Pb的含量。结果表明:Pb胁迫下供试玉米品种各器官含Pb量表现为根>茎≌叶>籽实;与对照相比,根、茎、叶Pb含量均大幅度提高,籽实含量的提高幅度相对较小;Pb胁迫条件下,有近半数的供试玉米品种的籽实Pb含量超过了国家规定的卫生标准,显示了在受重金属污染农田生产的玉米产品存在着较高的受Pb污染的风险。有22个品种平均籽实生物量在较强Pb胁迫下有所下降,降幅为0.9%~38.7%,但平均降幅仅为12.6%,显示玉米在Pb胁迫下的减产不易察觉,从而增加了在受污染农田中玉米产品受Pb污染的风险。但研究也表明,在较高Pb胁迫下尚有52%的品种籽实Pb含量未超过国家卫生标准最高限量值,因此可以利用这些品种在受Pb污染农田中进行玉米生产,以降低Pb经玉米产品进入人类食物链的风险。研究结果还发现供试玉米品种各营养器官间Pb含量均呈极显著正相关,但营养器官与籽实Pb含量间无显著相关。其中在较强的胁迫条件下营养器官Pb含量特别高的品种No.1的籽实中Pb含量(0.19 mg·kg-1)比较低,未超过国家卫生标准;品种No.2、No.3和品种No.6也有类似的特点。除上述品种以及品种No.4外,其余品种籽实Pb含量遵循与营养器官Pb含量成正比的一般规律。根中Pb含量特别高的品种No.1,籽实产量在Pb胁迫下略有下降,但下降幅度最小。胁迫条件下,品种No.1的营养器官Pb总量最高(51.69 mg·plant-1),是对照的近12倍;籽实Pb含量符合国家标准的品种No.2,No.3和No.6的营养器官Pb总量也较高,在36~42 mg·plant-1之间。由此可见,存在着在受Pb污染农田利用这些品种进行玉米生产同时修复受污染土壤的可能。  相似文献   

5.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

6.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

7.
新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警   总被引:5,自引:0,他引:5  
从新疆加工辣椒主产地(焉耆盆地)采集105个辣椒地典型土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用污染负荷指数(Pollution load index,PLI)、潜在生态风险指数(Potential ecological risk index,RI)和生态风险预警指数(Ecological risk warning index,I_(ER))对辣椒地土壤重金属污染及生态风险进行评价。结果表明:(1)焉耆盆地辣椒地土壤Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的1.65、1.40、1.32、3.21、6.42倍。辣椒地土壤Pb和Zn呈现重度污染,Cd、Cr和Ni轻度污染,As、Mn和Cu无污染。(2)土壤PLI平均值为1.40,呈现轻度污染。各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Pb、Cr、Zn。土壤RI平均值为18.40,属于轻微生态风险态势,IER平均值为-4.78,属于无警态势;博湖县辣椒地污染水平、潜在生态风险程度与生态风险预警等级最高,焉耆县污染水平、潜在生态风险程度与生态风险预警等级最低。(3)辣椒地土壤As、Cd、Pb与Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的控制。Cd是焉耆盆地辣椒地生态风险等级最高的重金属元素,研究区农业生产过程中要防范Cd的污染风险。  相似文献   

8.
Pollution of agricultural land by heavy metals has imposed an increasingly serious risk to environmental and human health in recent years. Heavy metal pollutants may enter the human food chain through agricultural products and groundwater from the polluted soils. Progress has been made in the past decade on phytoremediation, a safe and inexpensive approach to remove contaminants from soil and water using plants. However, in most cases, agricultural land in China cannot afford to grow phytoremediator plants instead of growing crops due to food supply for the great population. Therefore, new and effective methods to decrease the risk of heavy metal pollution in crops and to clean the contaminated soils are urgently needed. If we can find crop germplasms (including species and varieties) that accumulate heavy metals in their edible parts, such as the leaves of vegetables or grains of cereals, at a level low enough for safe consumption, then we can grow these selected species or varieties in the lands contaminated or potentially contaminated by heavy metals. If we can find crop germplasms that take in low concentrations of heavy metals in their edible parts and high content of the metals in their inedible parts, then we can use these selected species or varieties for soil remediation. In this study, the feasibility of the method is assessed by analyzing Pb concentrations in edible and inedible parts of 25 varieties of maize (Zea mays) grown in Pb-contaminated soils. The soil concentrations of Pb were 595.55 mg/kg in the high Pb exposed treatment and 195.55 mg/kg in the control. The results showed that the Pb concentrations in different tissues were in the order of root > shoot ≅ leaf > grain. Compared with the control, the Pb concentrations in root, shoot and leaf were greatly increased under the high Pb exposed condition, while the increments of Pb concentration in grain were relatively lower. Under the high Pb exposure, the grain Pb concentrations of 12 varieties exceeded the maximal Pb limitation of the National Food Hygiene Standard of China (NFHSC) and were inedible. This indicates that there is a high Pb pollution risk for maize grown on Pb polluted sites. Although 22 of the 25 tested varieties had harvest loss under the highly Pb stressed condition, ranging from 0.86%–38.7% of the grain biomass acquired at the control, the average harvest loss of all the tested varieties was only 12.6%, which is usually imperceptible in normal farming practices. Therefore the risk of Pb pollution in maize products cannot be promptly noticed and prevented based only on the outcome of the harvest. However, we did find that 13 of the 25 tested varieties had grain Pb concentrations lower than the limitation of the NFHSC. It is, therefore, possible to reduce the pollution risk if these favorable varieties are used for maize production in Pb-contaminated or potentially contaminated agricultural lands. Pb concentrations in vegetative tissues (root, stem and leaf) were significantly correlated with each other, while Pb concentrations of each vegetative tissue were not significantly correlated with that of grain. Among the 25 tested varieties, some varieties had Pb concentrations in grain lower than (No.1–3 and No.6) or slightly above (No.4) the limitation of the NFHSC, while their Pb concentrations in the vegetative tissues were among the highest. When excluding these varieties, correlations between the Pb concentrations of grain and those of vegetative tissues of the rest of the tested varieties became highly significant. In addition, variety No. 1 had the lowest harvest loss under high Pb exposed, and the highest Pb accumulation in vegetative tissues (51.69 mg/plant, 12 times as much as in the control). Similar features were also observed in varieties No.3, No.3 and No.6, which absorbed Pb for 36–42 mg/plant under high Pb exposed. We recommend these varieties of maize to be used for bioremediation of Pb contaminated soil and crop production at the same time. Translated from Acta Phytoecologica Sina, 2006, 29(6): 992–999 [译自: 植物生态学报]  相似文献   

9.
Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.  相似文献   

10.
海南稻田土壤硒与重金属的含量、分布及其安全性   总被引:8,自引:0,他引:8  
采集了海南省18个市(县)代表性的稻田土壤耕作层(0—20cm)样品280个,研究了硒(Se)和5种有毒重金属元素(Hg、Cd、Cr、Pb和As)的含量、分布及其相关关系,并对Se和重金属的安全性进行评价,可为合理区划清洁且富Se稻田提供理论依据。结果表明:海南稻田土壤中Hg、Cd、Cr、Pb和As平均含量均低于国家土壤环境质量一级标准值和全国土壤背景值,以绿色食品产地环境技术条件限量标准为标准,用单项污染指数法和内梅罗综合污染指数法评价海南稻田土壤重金属的污染状况,结果都是清洁的。但以海南省土壤背景值做参比值,Hakanson潜在生态危害指数达到211.54,属于强生态危害,从潜在生态危害系数来看,Hg(102.61)和Cd(98.89)达到强生态危害,分别比海南省土壤背景值增加1.56和2.3倍,今后应注意控制Hg和Cd污染源。稻田土壤Se含量从痕量到1.532mg/kg之间,平均值为0.211mg/kg,占47.5%的稻田土壤Se含量处于中等及以上水平(>0.175mg/kg)。Se含量高的稻田土壤主要集中在东北部的海口及其周边的澄迈、定安、文昌和琼海,还有东南部的万宁和保亭。由于重金属平均含量还比较低,可暂时忽略重金属污染,故可在上述Se含量高的稻田土壤上种植富Se水稻。稻田土壤Se含量与Hg、Cd和As含量呈极显著或显著正相关,因此今后应加强研究稻田土壤Se与Hg、Cd和As的有效性及其相互作用,以便生产出绿色的富Se优质大米。  相似文献   

11.
Monosporascus cannonballus is an important cucurbit root pathogen, which has been reported in the main production areas of melon and watermelon in Brazil and worldwide and potentially capable to colonize roots of different species. Crop rotation is considered an effective management strategy to prevent this disease. The aim of this study was to evaluate the response of different crops, pumpkin, cotton, cowpea, sesame, watermelon, melon, corn, cucumber, sorghum and tomato, to the infection of this pathogen. Seedlings were transplanted into plastic containers with an inoculum concentration of 20 colony‐forming units (CFU) g?1 of M. cannonballus. Fifty days after transplanting, the variables analysed were the degree of disease severity on the root system and the frequency of reisolation. On cucurbits, the results demonstrated different degrees of susceptibility among crops and cultivars, being melon and watermelon the most sensitive species. In contrast, Cucurbita cultivars were the most tolerant. Regarding non‐cucurbit crops, maize, sorghum and tomato presented root discoloration and M. cannonballus was reisolated from roots. Cotton, cowpea and sesame cultivars were not affected by the pathogen, so they can be considered as alternative crops to be cultivated, or in rotation with cucurbits, in M. cannonballus infested soils.  相似文献   

12.
广西锰矿恢复区食用农作物重金属污染评价   总被引:12,自引:0,他引:12  
对广西平乐、荔浦两锰矿恢复区种植的食用农作物进行了调查和重金属含量分析.结果表明:两锰矿区农作物Zn、Pb、Cr、Cu和Cd的含量范围分别在1.18~20.46、0.52~16.16、0.33~6.62、0.01~6.24和0.01~2.76mg.kg-1之间.其中,豆类作物中的重金属含量最高,其次是薯类.单因子污染指数评价表明,农作物基本未受Zn、Cu污染,但受Pb、Cd和Cr污染严重,以Pb污染最重,受污染率达100%,Cr和Cd受污染率分别为96.9%和75.0%;从综合污染指数来看,农作物受污染率达100%,其中,重、中、轻污染分别占87.5%、9.4%和3.1%.表明在锰矿废弃地直接种植食用农作物存在较大风险,应重新考虑其恢复利用模式.  相似文献   

13.
上海地区绿化树种重金属污染防护特性的研究   总被引:14,自引:2,他引:14  
通过测定土壤样品的重金属含量,调查了上海七宝镇污染水系两侧与上海宝钢集团厂区的重金属污染状况。结果表明,在污染水系两侧重金属含量较对照稍高,而上海宝钢厂区各样点土壤重金属含量明显高于对照,存在较严重的污染.同时在这两处重金属污染地带观察记录了绿化树种的生长状况,采集植物样品以ICP仪进行树木样品的重金属含量分析,综合两方面数据对近20种常见绿化树种的重金属污染的防护特性进行了比较研究.结果表明,法国冬青、紫薇、木芙蓉、女贞和龙柏等植物种类富集重金属能力较强,且生长状况较为良好,最适于作为重金属污染厂区的生态防护绿化的主要树种;而蚊母、夹竹桃和石楠等植物种类虽然富集重金属能力较低,但有较强的耐性,能良好生长。也适于作为污染区绿化美化树种。  相似文献   

14.
Contamination with heavy metals is one of the most pressing threats to water and soil resources, as well as human health. Phytoremediation might potentially be used to remediate metal-contaminated sites. A major advance in the development of phytoremediation for heavy metal affected soils was the discovery of heavy metal hyperaccumulation in plants. This study applied several established criteria to identify hyperaccumulator plants. A case study was conducted at a mining area in the Hamedan province in the west central region of Iran. The results indicated that plant metal accumulation differed among species and plant parts. Plant species grown in substrata with elevated metal levels contained significantly higher metal levels. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of specific heavy metals measured in this study and they might potentially be used for the phytoremediation of contaminated soils.  相似文献   

15.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

16.
蚯蚓对土壤中铜、镉生物有效性的影响   总被引:52,自引:4,他引:52  
俞协治  成杰民 《生态学报》2003,23(5):922-928
以第四纪红黏土红壤和长江冲积物形成的高砂土为供试土壤、分别加入3个浓度的Cu^2 (100、200、400mg/kg)或Cd^2-(5.10、20mg/kg)模拟土壤污染.设置接种蚯蚓(Pheretima sp.)处理与不加蚯蚓对照.并种植黑麦草(Lolium multiflorum)、研究蚯蚓活动对土壤中Cu、Cd生物有效性的影响.以揭示蚯蚓在植物修复重金属污染土壤中的作用。结果表明:蚯蚓活动显著增加红黏中DTPA提取态Cu的含量、只有在浓度低于200mg/kgCu的处理中.才能增加CaCl2提取态Cu的含量.对H2O提取态Cu影响甚微;而对高砂土上Cu、Cd的各种形态影响均不显著;除红黏中浓度高于100mg/kgCu和10mg/kgCd处理外.蚯蚓活动显著提高了两种土壤上黑麦草地上部的生物量;接种蚯蚓后各种重金属处理中黑麦草对Cu的吸收量也显著增加,而Cd的吸收量变化不大。蚯蚓可能通过提高重金属的生物有效性而间接影响植物对重金属的修复效率。  相似文献   

17.
The effects of humic acid (HA) on heavy-metal uptake by plants and degradation of total petroleum hydrocarbons (TPHs) in a wetland microcosm planted with Phragmites communis were evaluated by comparing waterlogged soils and water-drained upland soils. Experiments were conducted on soils artificially contaminated with heavy metals (Pb, Cu, Cd, Ni) and diesel fuel. HA showed a positive influence on biomass increase for all conditions, but more for belowground than aboveground biomass, and lower in contaminated than uncontaminated soil. The bioavailability and leachability factor (BLF) for all heavy metals except Ni increased with HA addition in both the control and the P. communis planted microcosms, suggesting that more heavy metals could be potentially phytoavailable for plant uptake. Microbial activities were not affected by both heavy metals and TPH contamination, and HA effects on stimulating microbial activities were much greater in the contaminated soil than under uncontaminated conditions. HA addition enhanced the degradation of TPH and n-alkane in waterlogged conditions. The results show that HA can increase the remedial performance in P. communis dominated wetlands simultaneously contaminated with heavy metals and petroleum hydrocarbons and thus prevent contamination of groundwater or other adjacent ecosystems.  相似文献   

18.
? Premise of the study: Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. ? Methods: Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. ? Key results: Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. ? Conclusions: The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.  相似文献   

19.
Shengting Rao  Jia Fang  Keli Zhao 《Phyton》2022,91(12):2669-2685

Soil is an essential resource for agricultural production. In order to investigate the pollution situation of heavy metals in the soil-crop system in the e-waste dismantling area, the crop and soil samples (226 pairs, including leaf vegetables, solanaceous vegetables, root vegetables, and fruits) around the e-waste dismantling area in southeastern Zhejiang Province were collected. The concentrations of Cd, Cu, Pb, and Cr were determined. The average concentrations of Cd, Cu, Pb, and Cr in soils were 0.94, 107.79, 80.28, and 78.14 mg kg-1, respectively, and their corresponding concentrations in crops were 0.024, 0.7, 0.041, and 0.06 mg kg-1, respectively. The transfer capacity of leaf vegetables was significantly higher than that of non-leaf vegetables, and the accumulation of four heavy metals in crops tended to be Cd > Cu > Cr/Pb. The pollution index’s results revealed that the soil pollution degree under different land uses ranked as root vegetables soil > leaf vegetables soil > solanaceous vegetables soil > fruit soil. The carcinogenic and non-carcinogenic risks of heavy metal exposure were ranked as food intake > accidental ingestion > dermal contact > inhalation. The comprehensive non-carcinogenic risk was ranked as Cr > Cd > Pb/Cu. Our results could be used to provide useful information for further crop cultivation layout in the study area, which can guarantee the local residents’ health and food safety.

  相似文献   

20.
The reclamation of subsidence area was regarded as a useful pathway to rebuild landscape and ecosystem. However, the elevated concentrations of heavy metals in the reclaimed area may lead to potential environmental and health risks. This study was aimed at investigating the accumulation of heavy metals in the soils and vegetables, and evaluate the potential health risks to human beings via consuming these vegetables. The concentrations of heavy metals (Cd, Cu, Pb, and Zn) were measured by using inductively coupled plasma mass spectrometry. The elevated concentrations of heavy metals were found in the soil from the reclaimed area when compared with the background value. The concentrations of heavy metals were various among the different vegetable species. The heavy metal tolerance could be found in all the selected vegetables. The elevated concentrations of Cu, Pb, and Zn in the edible part of the selected vegetables indicated that the consumption of these vegetables may lead to potential health risk. The intake of soybean, radish, sweet potato, and mugwort may lead to potential health risks due to the elevated target health quotients. Chinese cabbage and pepper were regarded as the suitable vegetables which may help in reducing the potential health risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号