首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration.  相似文献   

2.
Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber''s congenital amaurosis (LCA1), and dominant cone–rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro. The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer—6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.  相似文献   

3.
The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) concentrations of Ca(2+). At low Ca(2+), immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca(2+)-dependent electrophoretic mobility shift.  相似文献   

4.
Regulation of cGMP synthesis by retinal membrane guanylyl cyclase isozymes (RetGC1 and RetGC2) in rod and cone photoreceptors by calcium-sensitive guanylyl cyclase activating proteins (GCAP1 and GCAP2) is one of the key molecular mechanisms affecting the response to light and is involved in congenital retinal diseases. The objective of this study was to identify the physiological sequence of events underlying RetGC activation in vivo, by studying the electrophysiological and biochemical properties of mouse rods in a new genetic model lacking GCAP1. The GCAP1−/− retinas expressed normal levels of RetGC isozymes and other phototransduction proteins, with the exception of GCAP2, whose expression was elevated in a compensatory fashion. RetGC activity in GCAP1−/− retinas became more sensitive to Ca2+ and slightly increased. The bright flash response in electroretinogram (ERG) recordings recovered quickly in GCAP1−/−, as well as in RetGC1−/−GCAP1−/−, and RetGC2−/−GCAP1−/− hybrid rods, indicating that GCAP2 activates both RetGC isozymes in vivo. Individual GCAP1−/− rod responses varied in size and shape, likely reflecting variable endogenous GCAP2 levels between different cells, but single-photon response (SPR) amplitude and time-to-peak were typically increased, while recovery kinetics remained faster than in wild type. Recovery from bright flashes in GCAP1−/− was prominently biphasic, because rare, aberrant SPRs producing the slower tail component were magnified. These data provide strong physiological evidence that rod photoresponse recovery is shaped by the sequential recruitment of RetGC isozyme activation by GCAPs according to the different GCAP sensitivities for Ca2+ and specificities toward RetGC isozymes. GCAP1 is the ‘first-response’ sensor protein that stimulates RetGC1 early in the response and thus limits the SPR amplitude, followed by activation of GCAP2 that adds stimulation of both RetGC1 and RetGC2 to speed-up photoreceptor recovery.  相似文献   

5.
Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes blinding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1: through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC2−/−GCAPs1,2−/− mouse retinas in a non-additive fashion. The M26R GCAP1, which binds but does not activate RetGC1, suppressed activation of recombinant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its kinase homology and dimerization domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr1016–Ser1103 fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in the kinase homology domain, W708R and I734T, linked to Leber congenital amaurosis prevented binding of both GCAP1-GFP and GCAP2-GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg488–Arg851 portion of RetGC1, and mutations in that region causing Leber congenital amaurosis blindness disrupt activation of the cyclase by both GCAP1 and GCAP2.  相似文献   

6.
Retinal membrane guanylyl cyclase (RetGC) in the outer segments of vertebrate photoreceptors is controlled by guanylyl cyclase activating proteins (GCAPs), responding to light-dependent changes of the intracellular Ca(2+) concentrations. We present evidence that a different RetGC binding protein, retinal degeneration 3 protein (RD3), is a high-affinity allosteric modulator of the cyclase which inhibits RetGC activity at submicromolar concentrations. It suppresses the basal activity of RetGC in the absence of GCAPs in a noncompetitive manner, and it inhibits the GCAP-stimulated RetGC at low intracellular Ca(2+) levels. RD3 opposes the allosteric activation of the cyclase by GCAP but does not significantly change Ca(2+) sensitivity of the GCAP-dependent regulation. We have tested a number of mutations in RD3 implicated in human retinal degenerative disorders and have found that several mutations prevent the stable expression of RD3 in HEK293 cells and decrease the affinity of RD3 for RetGC1. The RD3 mutant lacking the carboxy-terminal half of the protein and associated with Leber congenital amaurosis type 12 (LCA12) is unable to suppress the activity of the RetGC1/GCAP complex. Furthermore, the inhibitory activity of the G57V mutant implicated in cone-rod degeneration is strongly reduced. Our results suggest that inhibition of RetGC by RD3 may be utilized by photoreceptors to block RetGC activity during its maturation and/or incorporation into the photoreceptor outer segment rather than participate in dynamic regulation of the cyclase by Ca(2+) and GCAPs.  相似文献   

7.
Guanylyl cyclase-activating proteins (GCAP) are EF-hand Ca(2+)-binding proteins that activate photoreceptor guanylyl cyclase (RetGC) in the absence of Ca(2+) and inhibit RetGC in a Ca(2+)-sensitive manner. The reported data for the RetGC inhibition by Ca(2+)/GCAPs in vitro are in disagreement with the free Ca(2+) levels found in mammalian photoreceptors (Woodruff, M. L., Sampath, A. P., Matthews, H. R., Krasnoperova, N. V., Lem, J., and Fain, G. L. (2002) J. Physiol. (Lond.) 542, 843-854). We have found that binding of Mg(2+) dramatically affects both Ca(2+)-dependent conformational changes in GCAP-1 and Ca(2+) sensitivity of RetGC regulation by GCAP-1 and GCAP-2. Lowering free Mg(2+) concentrations ([Mg](f)) from 5.0 mm to 0.5 mm decreases the free Ca(2+) concentration required for half-maximal inhibition of RetGC ([Ca]((1/2))) by recombinant GCAP-1 and GCAP-2 from 1.3 and 0.2 microm to 0.16 and 0.03 microm, respectively. A similar effect of Mg(2+) on Ca(2+) sensitivity of RetGC by endogenous GCAPs was observed in mouse retina. Analysis of the [Ca]((1/2)) changes as a function of [Mg](f) in mouse retina shows that the [Ca]((1/2)) becomes consistent with the range of 23-250 nm free Ca(2+) found in mouse photoreceptors only if the [Mg](f) in the photoreceptors is near 1 mm. Our data demonstrate that GCAPs are Ca(2+)/Mg(2+) sensor proteins. While Ca(2+) binding is essential for cyclase activation and inhibition, Mg(2+) binding to GCAPs is critical for setting the actual dynamic range of RetGC regulation by GCAPs at physiological levels of free Ca(2+).  相似文献   

8.
Dynamics of cyclic GMP synthesis in retinal rods   总被引:6,自引:0,他引:6  
Burns ME  Mendez A  Chen J  Baylor DA 《Neuron》2002,36(1):81-91
In retinal rods, Ca(2+) exerts negative feedback control on cGMP synthesis by guanylate cyclase (GC). This feedback loop was disrupted in mouse rods lacking guanylate cyclase activating proteins GCAP1 and GCAP2 (GCAPs(-/-)). Comparison of the behavior of wild-type and GCAPs(-/-) rods allowed us to investigate the role of the feedback loop in normal rod function. We have found that regulation of GC is apparently the only Ca(2+) feedback loop operating during the single photon response. Analysis of the rods' light responses and cellular dark noise suggests that GC normally responds to light-driven changes in [Ca(2+)] rapidly and highly cooperatively. Rapid feedback to GC speeds the rod's temporal responsiveness and improves its signal-to-noise ratio by minimizing fluctuations in cGMP.  相似文献   

9.
Cyclic GMP serves as the second messenger in visual transduction, linking photon absorption by rhodopsin to the activity of ion channels. Synthesis of cGMP in photoreceptors is supported by a pair of retina-specific guanylyl cyclases, retGC1 and -2. Two neuronal calcium sensors, GCAP1 and GCAP2, confer Ca(2+) sensitivity to guanylyl cyclase activity, but the importance and the contribution of each GCAP is controversial. To explore this issue, the gene GUCA1B, coding for GCAP2, was disrupted in mice, and the capacity for knock-out rods to regulate retGC and generate photoresponses was tested. The knock-out did not compromise rod viability or alter outer segment ultrastructure. Levels of retGC1, retGC2, and GCAP-1 expression did not undergo compensatory changes, but the absence of GCAP2 affected guanylyl cyclase activity in two ways; (a) the maximal rate of cGMP synthesis at low [Ca(2+)] dropped 2-fold and (b) the half-maximal rate of cGMP synthesis was attained at a higher than normal [Ca(2+)]. The addition of an antibody raised against mouse GCAP2 produced similar effects on the guanylyl cyclase activity in wild type retinas. Flash responses of GCAP2 knock-out rods recovered more slowly than normal. Knock-out rods became more sensitive to flashes and to steps of illumination but tended to saturate at lower intensities, as compared with wild type rods. Therefore, GCAP2 regulation of guanylyl cyclase activity quickens the recovery of flash and step responses and adjusts the operating range of rods to higher intensities of ambient illumination.  相似文献   

10.
Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity.  相似文献   

11.
We explored the possibility that, in the regulation of an effector enzyme by a Ca(2+)-sensor protein, the actual Ca(2+) sensitivity of the effector enzyme can be determined not only by the affinity of the Ca(2+)-sensor protein for Ca(2+) but also by the relative affinities of its Ca(2+)-bound versus Ca(2+)-free form for the effector enzyme. As a model, we used Ca(2+)-sensitive activation of photoreceptor guanylyl cyclase (RetGC-1) by guanylyl cyclase activating proteins (GCAPs). A substitution Arg(838)Ser in RetGC-1 found in human patients with cone-rod dystrophy is known to shift the Ca(2+) sensitivity of RetGC-1 regulation by GCAP-1 to a higher Ca(2+) range. We find that at physiological concentrations of Mg(2+) this mutation increases the free Ca(2+) concentration required for half-maximal inhibition of the cyclase from 0.27 to 0.61 microM. Similar to rod outer segment cyclase, Ca(2+) sensitivity of recombinant RetGC-1 is strongly affected by Mg(2+), but the shift in Ca(2+) sensitivity for the R838S mutant relative to the wild type is Mg(2+)-independent. We determined the apparent affinity of the wild-type and the mutant RetGC-1 for both Ca(2+)-bound and Ca(2+)-free GCAP-1 and found that the net shift in Ca(2+) sensitivity of the R838S RetGC-1 observed in vitro can arise predominantly from the change in the affinity of the mutant cyclase for the Ca(2+)-free versus Ca(2+)-loaded GCAP-1. Our findings confirm that the dynamic range for RetGC regulation by Ca(2+)/GCAP is determined by both the affinity of GCAP for Ca(2+) and relative affinities of the effector enzyme for the Ca(2+)-free versus Ca(2+)-loaded GCAP.  相似文献   

12.
GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice   总被引:6,自引:0,他引:6  
Visual transduction in retinal photoreceptors operates through a dynamic interplay of two second messengers, Ca(2+) and cGMP. Ca(2+) regulates the activity of guanylate cyclase (GC) and the synthesis of cGMP by acting on a GC-activating protein (GCAP). While this action is critical for rapid termination of the light response, the GCAP responsible has not been identified. To test if GCAP1, one of two GCAPs present in mouse rods, supports the generation of normal flash responses, transgenic mice were generated that express only GCAP1 under the control of the endogenous promoter. Paired flash responses revealed a correlation between the degree of recovery of the rod a-wave and expression levels of GCAP1. In single cell recordings, the majority of the rods generated flash responses that were indistinguishable from wild type. These results demonstrate that GCAP1 at near normal levels supports the generation of wild-type flash responses in the absence of GCAP2.  相似文献   

13.
The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met823 was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg822. The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met823 or Arg822 was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg822 and Met823.  相似文献   

14.
Guanylyl cyclase activating protein 1 (GCAP1), after substitution of Ca(2+) by Mg(2+) in its EF-hands, stimulates photoreceptor guanylyl cyclase, RetGC1, in response to light. We inactivated metal binding in individual EF-hands of GCAP1 tagged with green fluorescent protein to assess their role in GCAP1 binding to RetGC1 in co-transfected HEK293 cells. When expressed alone, GCAP1 was uniformly distributed throughout the cytoplasm and the nuclei of the cells, but when co-expressed with either fluorescently tagged or non-tagged RetGC1, it co-localized with the cyclase in the membranes. The co-localization did not occur when the C-terminal portion of RetGC1, containing its regulatory and catalytic domains, was removed. Mutations that preserved Mg(2+) binding in all three metal-binding EF-hands did not affect GCAP1 association with the cyclase in live cells. Locking EF-hand 4 in its apo-conformation, incapable of binding either Ca(2+) or Mg(2+), had no effect on GCAP1 association with the cyclase. In contrast to EF-hand 4, inactivation of EF-hand 3 reduced the efficiency of the co-localization, and inactivation of EF-hand 2 drastically suppressed GCAP1 binding to the cyclase. These results directly demonstrate that metal binding in EF-hand 2 is crucial for GCAP1 attachment to RetGC1, and that in EF-hand 3 it is less critical, although it enhances the efficiency of the GCAP1 docking on the target enzyme. Metal binding in EF-hand 4 has no role in the primary attachment of GCAP1 to the cyclase, and it only triggers the activator-to-inhibitor functional switch in GCAP1.  相似文献   

15.
Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase–activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone–rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme''s resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone–rod dystrophy 6 pathology.  相似文献   

16.
Among single-spanning transmembrane receptors (sTMRs), two guanylyl cyclase receptors, GC1 and GC2, are critically important during phototransduction in vertebrate retinal photoreceptor cells. Ca(2+)-free forms of guanylyl cyclase-activating proteins (GCAPs) stimulate GCs intracellularly by a molecular mechanism that is not fully understood. To gain further insight into the mechanism of activation and specificity among these proteins, for the first time, several soluble and active truncated GCs and fusion proteins between intracellular domains of GCs and full-length GCAPs were generated. The GC activity of myristoylated GCAP--(437-1054)GC displayed typical [Ca(2+)] dependence, and was further enhanced by ATP and inhibited by guanylyl cyclase inhibitor protein (GCIP). The myristoyl group of GCAP1 appeared to be critical for the inhibition of GCs at high [Ca(2+)], even without membranes. In contrast, calmodulin (CaM)--(437-1054)GC1 fusion protein was inactive, but could be stimulated by exogenous GCAP1. In a series of experiments, we showed that the activation of GCs by linked GCAPs involved intra- and intermolecular mechanisms. The catalytically productive GCAP1--(437-1054)GC1 complex can dissociate, allowing binding and stimulation of the GC1 fusion protein by free GCAP1. This suggests that the intramolecular interactions within the fusion protein have low affinity and are mimicking the native system. We present evidence that the mechanism of GC activation by GCAPs involves a dimeric form of GCs, involves direct interaction between GCs and GCAPs, and does not require membrane components. Thus, fusion proteins may provide an important advance for further structural studies of photoreceptor GCs and other sTMRs with and without different forms of regulatory proteins.  相似文献   

17.
It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.  相似文献   

18.
Cyclic GMP is essential for the ability of rods and cones to respond to the light stimuli. Light triggers hydrolysis of cGMP and stops the influx of sodium and calcium through the cGMP-gated ion channels. The consequence of this event is 2-fold: first, the decrease in the inward sodium current plays the major role in an abrupt hyperpolarization of the cellular membrane; secondly, the decrease in the Ca2+ influx diminishes the free intracellular Ca2+ concentration. While the former constitutes the essence of the phototransduction pathway in rods and cones, the latter gives rise to a potent feedback mechanism that accelerates photoreceptor recovery and adaptation to background light. One of the most important events by which Ca2+ feedback controls recovery and light adaptation is synthesis of cGMP by guanylyl cyclase. Two isozymes of membrane photoreceptor guanylyl cyclase (retGC) have been identified in rods and cones that are regulated by Ca2+-binding proteins, GCAPs. At low intracellular concentrations of Ca2+ typical for light-adapted rods and cones GCAPs activate RetGC, but concentrations above 500 nM typical for dark-adapted photoreceptors turn them into inhibitors of retGC. A variety of mutations found in GCAP and retGC genes have been linked to several forms of human congenital retinal diseases, such as dominant cone degeneration, cone-rod dystrophy and Leber congenital amaurosis.  相似文献   

19.
Retinal guanylyl cyclase (RetGC)-activating proteins (GCAPs) regulate visual photoresponse and trigger congenital retinal diseases in humans, but GCAP interaction with its target enzyme remains obscure. We mapped GCAP1 residues comprising the RetGC1 binding site by mutagenizing the entire surface of GCAP1 and testing the ability of each mutant to bind RetGC1 in a cell-based assay and to activate it in vitro. Mutations that most strongly affected the activation of RetGC1 localized to a distinct patch formed by the surface of non-metal-binding EF-hand 1, the loop and the exiting helix of EF-hand 2, and the entering helix of EF-hand 3. Mutations in the binding patch completely blocked activation of the cyclase without affecting Ca2+ binding stoichiometry of GCAP1 or its tertiary fold. Exposed residues in the C-terminal portion of GCAP1, including EF-hand 4 and the helix connecting it with the N-terminal lobe of GCAP1, are not critical for activation of the cyclase. GCAP1 mutants that failed to activate RetGC1 in vitro were GFP-tagged and co-expressed in HEK293 cells with mOrange-tagged RetGC1 to test their direct binding in cyto. Most of the GCAP1 mutations introduced into the “binding patch” prevented co-localization with RetGC1, except for Met-26, Lys-85, and Trp-94. With these residues mutated, GCAP1 completely failed to stimulate cyclase activity but still bound RetGC1 and competed with the wild type GCAP1. Thus, RetGC1 activation by GCAP1 involves establishing a tight complex through the binding patch with an additional activation step involving Met-26, Lys-85, and Trp-94.  相似文献   

20.
Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+-dependent manner. At high [Ca2+], typical of the dark-adapted state (approximately 500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (approximately 50 nM) that occurs after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark-state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF-hand Ca2+-binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF-hand 1 is disabled. GCAP3 contains two domains with the EF-hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+-binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N-terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号