首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the immunocytochemical methods of light microscopy and electron microscopy, the distribution and ultrastructure of tyrosine hydroxylase (TH)-positive neurons was studied in the CNS of the bivalve mollusc Megangulus venulosus in norm and under the complex action of elevated temperature and hypoxia. The simultaneous effect of elevated temperature and hypoxia has been established to produce changes in the number and structure of TH-immunopositive neurons. The most significant changes in the CNS of M. venulosus were revealed after 60-min action and included the selective damage of processes of large neurons, the destruction of some synapses, and a decrease in TH-immunoreactivity in neurons and neuropil.  相似文献   

2.
Kotsiuba EP 《Tsitologiia》2003,45(12):1234-1238
By light and electron microscope histochemical and cytochemical methods, the localization and activity of NADPH-diaphorase (NADPH-d) were studied in the central nervous system (CNS) of the chiton in control and after hypoxia. After acute hypoxia, the enzymatic activity increased in all regions of CNS. At a chronic hypoxia, the activity of NADPH-d decreased to remain, however, higher than in control. Ultrastructural studies confirmed the availability of structural changes in neurons, and shifts in the activity of NADPH-d in control and in experimental mollusks. The elevated enzymatic activity revealed in this study may be due to the fact that these mollusks have been evolutionary adapted to a periodical oxygen deficiency.  相似文献   

3.
Effects of temperature stress on activities of NO-synthase (NOS) and tyrosine hydroxylase (TH) in the CNS of two species of bivalve molluscs, Mizuchopecten yessoensis and Chlamys farreri nipponensis (Pectinidae) were studied using NADPH-diaphorase histochemistry and immunocytochemistry. General and specific peculiarities in distribution and relative proportion of TH- and NO-containing neurons in the CNS nerve ganglia were revealed in norm and under stress at 30°C for 10, 30, and 60 min. The initial stress stage (for 10 min) has been found to be accompanied by an increase of the relative content of TH-positive neurons in some CNS areas of both mollusc species. In intact Chlamys farreri nipponensis, the presence of NOS in the CNS and its significant activation under temperature stress might have possibly been an important neuroprotective component of stress reaction in some mollusc species.  相似文献   

4.
By light and electron microscopy methods the effect of changes of environmental conditions on the state of the nitroxidergic system has been studied in molluscs on the background of action of elevated temperature and hypoxia. Analysis is performed of biological effect of isolated and combined effects of the studied factors on dynamics of NO synthesis. A higher resistance of CNS neurons to the combined action of hyperthermia and hypoxia is revealed in molluscs with the initially high level of nitrogen oxide production. In molluscs with the initially low level of development of the nitroxidergic system, induction of NO formation in stress has been found to be accompanied by a change of morphology of nervous structures. It is suggested that nitrogen oxide participates in evolutionary established mechanisms of protection of mollusc nerve cells from hypoxia, while the initial high level of NO production reflects larger adaptational possibilities characteristic of these organisms.  相似文献   

5.
By light and electron microscopy methods the effect of changes of environmental conditions on the state of the nitroxidergic system has been studied in molluscs on the background of action of elevated temperature and hypoxia. Analysis is performed of biological effect of isolated and combined effects of the studied factors on dynamics of NO synthesis. A higher resistance of CNS neurons to the combined action of hyperthermia and hypoxia is revealed in molluscs with the initially high level of nitrogen oxide production. In molluscs with the initially low level of development of the nitroxidergic system, induction of NO formation in stress has been found to be accompanied by a change of morphology of nervous structures. It is suggested that nitrogen oxide participates in evolutionary established mechanisms of protection of mollusc nerve cells from hypoxia, while the initial high level of NO production reflects larger adaptational possibilities characteristic of these organisms.  相似文献   

6.
P M Iuvone 《Life sciences》1983,33(13):1315-1324
Dopamine (DA)-containing neurons of retina were employed as an experimental model for studying the short-term regulation of tyrosine hydroxylase (TH) in tonically-active and tonically-inactive neurons. These DA-containing neurons are trans-synaptically activated by light. Two mechanisms have been observed in this system for regulation of TH activity. A short-term activation of TH that is characterized by a decreased apparent Km for pteridine cofactors occurs in response to rapid increases of neuronal activity. A second mechanism occurs in response to prolonged, tonic changes of neuronal activity and is characterized by changes of Vmax. Both the Km changes and Vmax changes represent changes of specific activity of TH rather than enzyme induction. To determine the effects of short-term increases of neuronal activity on TH in tonically-active and tonically-inactive neurons, the effects of acute administration of haloperidol were examined in rats that were continuously light-exposed or light-deprived for 4 days. Haloperidol increased TH activity in both light-exposed and light-deprived retinas. The drug elicited the same percent stimulation in both experimental conditions. However, because the basal activity of TH was higher in the light-exposed than the light-deprived retinas, the absolute increase of TH specific activity was greater in the light-exposed samples. The effect of protein phosphorylation on TH activity in extracts of chronically light-exposed or light-deprived retinas was also examined to determine if the differences in the response to haloperidol might be due to a difference in the amount of TH available for short-term activation. Phosphorylation by endogenous cyclic AMP-dependent protein kinase (APK) or by purified catalytic subunit of APK resulted in larger increases of TH specific activity in extracts of light-exposed retinas than in those of light-deprived retinas. As was observed for haloperidol-induced activation, the percent stimulation elicited by phosphorylation was similar in extracts of light-exposed and light-deprived retinas. These observations suggest that more enzyme is available for short-term activation in tonically-active neurons than in those that are tonically inactive. A hypothetical model is proposed in which TH exists in active and inactive forms, the ratio of which depends on the tonic level of neuronal activity.  相似文献   

7.
Striatal delivery of dopamine (DA) by midbrain substantia nigra pars compacta (SNc) neurons is vital for motor control and its depletion causes the motor symptoms of Parkinson's disease. While membrane potential changes or neuronal activity regulates tyrosine hydroxylase (TH, the rate limiting enzyme in catecholamine synthesis) expression in other catecholaminergic cells, it is not known whether the same occurs in adult SNc neurons. We administered drugs known to alter neuronal activity to mouse SNc DAergic neurons in various experimental preparations and measured changes in their TH expression. In cultured midbrain neurons, blockade of action potentials with 1?μM tetrodotoxin decreased TH expression beginning around 20?h later (as measured in real time by green fluorescent protein (GFP) expression driven off TH promoter activity). By contrast, partial blockade of small-conductance, Ca(2+) -activated potassium channels with 300?nM apamin increased TH mRNA and protein between 12 and 24?h later in slices of adult midbrain. Two-week infusions of 300?nM apamin directly to the adult mouse midbrain in vivo also increased TH expression in SNc neurons, measured immunohistochemically. Paradoxically, the number of TH immunoreactive (TH+) SNc neurons decreased in these animals. Similar in vivo infusions of drugs affecting other ion-channels and receptors (L-type voltage-activated Ca(2+) channels, GABA(A) receptors, high K(+) , DA receptors) also increased or decreased cellular TH immunoreactivity but decreased or increased, respectively, the number of TH+ cells in SNc. We conclude that in adult SNc neurons: (i) TH expression is activity-dependent and begins to change ~20?h following sustained changes in neuronal activity; (ii) ion-channels and receptors mediating cell-autonomous activity or synaptic input are equally potent in altering TH expression; and (iii) activity-dependent changes in TH expression are balanced by opposing changes in the number of TH+ SNc cells.  相似文献   

8.
Our study was concerned with the effect of brain hypoxia on cardiorespiratory control in the sleeping dog. Eleven unanesthetized dogs were studied; seven were prepared for vascular isolation and extracorporeal perfusion of the carotid body to assess the effects of systemic [and, therefore, central nervous system (CNS)] hypoxia (arterial PO(2) = 52, 45, and 38 Torr) in the presence of a normocapnic, normoxic, and normohydric carotid body during non-rapid eye movement sleep. A lack of ventilatory response to systemic boluses of sodium cyanide during carotid body perfusion demonstrated isolation of the perfused carotid body and lack of other significant peripheral chemosensitivity. Four additional dogs were carotid body denervated and exposed to whole body hypoxia for comparison. In the sleeping dog with an intact and perfused carotid body exposed to specific CNS hypoxia, we found the following. 1) CNS hypoxia for 5-25 min resulted in modest but significant hyperventilation and hypocapnia (minute ventilation increased 29 +/- 7% at arterial PO(2) = 38 Torr); carotid body-denervated dogs showed no ventilatory response to hypoxia. 2) The hyperventilation was caused by increased breathing frequency. 3) The hyperventilatory response developed rapidly (<30 s). 4) Most dogs maintained hyperventilation for up to 25 min of hypoxic exposure. 5) There were no significant changes in blood pressure or heart rate. We conclude that specific CNS hypoxia, in the presence of an intact carotid body maintained normoxic and normocapnic, does not depress and usually stimulates breathing during non-rapid eye movement sleep. The rapidity of the response suggests a chemoreflex meditated by hypoxia-sensitive respiratory-related neurons in the CNS.  相似文献   

9.
10.
Targeted disruption of the retinoblastoma gene in mice leads to embryonic lethality in midgestation accompanied by defective erythropoiesis. Rb(-/-) embryos also exhibit inappropriate cell cycle activity and apoptosis in the central nervous system (CNS), peripheral nervous system (PNS), and ocular lens. Loss of p53 can prevent the apoptosis in the CNS and lens; however, the specific signals leading to p53 activation have not been determined. Here we test the hypothesis that hypoxia caused by defective erythropoiesis in Rb-null embryos contributes to p53-dependent apoptosis. We show evidence of hypoxia in CNS tissue from Rb(-/-) embryos. The Cre-loxP system was then used to generate embryos in which Rb was deleted in the CNS, PNS and lens, in the presence of normal erythropoiesis. In contrast to the massive CNS apoptosis in Rb-null embryos at embryonic day 13.5 (E13.5), conditional mutants did not have elevated apoptosis in this tissue. There was still significant apoptosis in the PNS and lens, however. Rb(-/-) cells in the CNS, PNS, and lens underwent inappropriate S-phase entry in the conditional mutants at E13.5. By E18.5, conditional mutants had increased brain size and weight as well as defects in skeletal muscle development. These data support a model in which hypoxia is a necessary cofactor in the death of CNS neurons in the developing Rb mutant embryo.  相似文献   

11.
Perinatal hypoxia is known to induce long-lasting changes in the central dopaminergic system. In order to understand the cellular mechanism of these changes, we studied the effects of hypoxia on the levels of dopamine (DA) and tyrosine hydroxylase (TH) mRNA in untreated and NGF treated PC12 cells. On the second day after plating (DAP), cells were exposed to a hypoxic episode (pO2 = 10-20 mm Hg, 24 h), and the levels of DA and TH mRNA were examined on DAP 4 and DAP 8. In untreated cells, hypoxia induced a two fold increase both in DA and TH mRNA levels on DAP 4 which normalized up to DAP 8. This increase correlated with an activation of the hypoxia inducible factor (HIF-1alpha), measured with a reporter gene. In contrast, NGF treated cells responded to hypoxia with an increase of DA level on DAP 8. In these cells neither an increase of the HIF-1alpha activity measured immediately after hypoxia nor a significant increase of the TH mRNA level on DAP 8 were found. The findings indicate that NGF shifts the hypoxia induced changes of DA levels from a short-term to a long-term mode. The long-term increase of dopamine levels is the most likely result of changes connected with cell growth and differentiation and not the result of a long-term TH mRNA level increase.  相似文献   

12.
The activity (Vmax) of tyrosine hydroxylase (TH; EC 1.14.16.2), the rate limiting enzyme in the synthesis of catecholamines, is increased in carotid body, superior cervical ganglion, and the adrenal medulla during hypoxia (i.e., reduced PaO2). The present study was undertaken to determine if the increase in TH activity in these tissues during hypoxia is regulated at the level of TH mRNA. Adult rats were exposed to hypoxia (10% O2) or room air for periods lasting from 1 to 48 h. The carotid bodies, superior cervical ganglia, and adrenals were removed and processed for in situ hybridization using 35S-labeled oligonucleotide probes. The concentration of TH mRNA was increased by hypoxia at all time points in carotid body type I cells, but not in cells of either superior cervical ganglion or adrenal medulla. The increase in TH mRNA in carotid body during hypoxia did not require innervation of the carotid body or intact adrenal glands. In addition, hypercapnia, another physiological stimulus of carotid body activity, failed to induce an increase in TH mRNA in type I cells. Our findings suggest that hypoxia stimulates TH gene expression in the carotid body by a mechanism that is intrinsic to type I cells.  相似文献   

13.
14.
Using light- and electron microscopic methods, localization and activity of NO-synthase were studied in the CNS of the freshwater bivalve mollusc Nodularia vladivostokensis in norm and in acute hypoxia. Distribution peculiarities and the relative content of NO-ergic neurons were revealed in nervous ganglia. A rise of the NO-synthase activity was found in perikarya of medium-size neurons and in processes of small neurons in hypoxia. Ultrastructural localization of NO-synthase was established in cytoplasmic granules, cytosomes. In acute hypoxia an increase of the number of cytosomes and of their NO-synthase activity was revealed.  相似文献   

15.
Wu LY  Wang Y  Jin B  Zhao T  Wu HT  Wu Y  Fan M  Wang XM  Zhu LL 《Neurochemical research》2008,33(10):2118-2125
Nervous system development at early stage is in hypoxic environment. Very little is known about the role of hypoxia in neuronal development. P19 embryonal carcinoma (EC) cells are a widely used model for studying early neuronal development. In this study we investigated the roles of hypoxia in differentiation of dopaminergic neurons derived from P19 EC cells. Results demonstrate that hypoxia increases the percentage of differentiated neurons, especially neurons of dopaminergic phenotype. To investigate the potential mechanism involved in hypoxia promoted differentiation of dopaminergic neurons, we measured the expression of hypoxia-inducible factor 1α (HIF-1α), based on its characteristic response to hypoxia. The result shows that HIF-1α mRNA level in P19 EC cells increases after hypoxia treatment. It is known that HIF-1α regulates the expression of tyrosine hydroxylase (TH) gene through binding to its promoter. Therefore, we propose that the underlying mechanism for hypoxia promoted differentiation of dopaminergic neurons was mediated by HIF-1α up-regulation under hypoxia. Yue Wang—Co-first author. Special Issue in honor of Dr. Ji-Sheng Han.  相似文献   

16.
Neurochemical and morphological changes in the carotid body are induced by chronic hypoxia, leading to regulation of ventilation. In this study, we examined the time courses of changes in immunohistochemical intensity for tyrosine hydroxylase (TH) and cellular volume of glomus cells in rats exposed to hypoxia (10% O2) for up to 24 hr. Grayscale intensity for TH immunofluorescence was significantly increased in rats exposed to hypoxia for 12, 18, and 24 hr compared with control rats (p<0.05). The transectional area of glomus cells was not significantly different between experimental groups. The TH fluorescence intensity of the glomus cells exhibited a strong negative correlation with the transectional area in control rats (Spearman''s ρ = −0.70). This correlation coefficient decreased with exposure time, and it was lowest for the rats exposed to hypoxia for 18 hr (ρ = −0.18). The histogram of TH fluorescence intensity showed a single peak in control rats. The peaks were gradually shifted to the right and became less pronounced in hypoxia-exposed rats, suggesting that a hypoxia-induced increase in TH immunoreactivity occurred uniformly in glomus cells. In conclusion, this study demonstrates that short-term hypoxia induces an increase in TH protein expression in rat carotid body glomus cells. (J Histochem Cytochem 58:839–846, 2010)  相似文献   

17.
We examined the effects of hypoxia (8% O2) on in vivo tyrosine hydroxylation, a rate-limiting step for catecholamine synthesis, in the rat adrenal gland. The hydroxylation rate was determined by measuring the rate of accumulation of 3,4-dihydroxyphenylalanine (DOPA) after decarboxylase inhibition. One hour after hypoxic exposure, DOPA accumulation decreased to 60% of control values, but within 2 h it doubled. At 2 h, the apparent Km values for tyrosine and for biopterin cofactor of tyrosine hydroxylase (TH) in the soluble fraction were unchanged, whereas the Vmax value increased by 30%. The content of total or reduced biopterin was unchanged, but the content of tyrosine increased by 80%. Tyrosine administration had little effect on DOPA accumulation under room air conditions but enhanced DOPA accumulation under hypoxia. After denervation of the adrenal gland, the hypoxia-induced increase in DOPA accumulation and in the Vmax value was abolished, whereas the hypoxia-induced increase in tyrosine content was persistent. These results suggest that in vivo tyrosine hydroxylation is enhanced under hypoxia, although availability of oxygen is reduced. The enhancement is the result of both an increase in tyrosine content coupled with increased sensitivity of TH to changes in tyrosine tissue content and of an increase in dependence of TH on tyrosine levels. The increase in the sensitivity of TH and in the Vmax value is neurally induced, whereas the increase in tyrosine content is regulated by a different mechanism.  相似文献   

18.
目的:观察氯化钴(COCl2)预处理对急性低氧后海马神经元电压门控性Na^ 、K^ 电流的影响。方法:原代培养大鼠海马神经元,分为COCl2预处理和非处理组,采用膜片钳全细胞记录技术,检测急性低氧后海马神经元钠电流(INa)、钾电流(Ik)的变化。结果:急性低氧后,海马神经元INa、Ik电流幅度明显降低,INa阈值右移,而经CoCl2预处理的海马神经元INa、Ik电流的降低幅度明显减轻。结论:COCl2预处理减轻急性低氧所致的INa、Ik电流变化,对神经元有明显的保护作用。  相似文献   

19.
Changes in homospecific activity (unit of enzyme activity per unit of enzyme protein; Rush, Kindler and Udenfriend, 1974. Biochem. Biophys. Res. Commun., 61, 38) of tyrosine hydroxylase (TH) in the striatum of the brain were examined in MPTP-treated mice and parkinsonian patients. After a single injection of MPTP to mice, TH activity was acutely inhibited onlyin situ without changes in in vitro TH activity (Vmax) and TH protein; TH homospecific activity (TH Vmax/TH protein) did not change. After repeated injection of MPTP to mice for 8 days, in situ TH activity, in vitro TH Vmax, and TH protein were decreased in parallel, and TH homospecific activity did not change The result indicates that the decreases in in situ TH activity and in TH Vmax are due to the decrease in TH protein by nerve degeneration of dopaminergic neurons in MPTP treated mice. However, when MPP+ was infused in the striatum of rats for 3 hours, in vitro TH activity (Vmax) was decreased without changes in TH protein. Thus, TH homospecific activity was decreased. The results indicate that MPP+ inactivates TH protein in the striatum after continued infusion. In contrast, the homospecific activity of TH in post-mortem parkinsonian striatum was increased 3-fold. The increase in homospecific activity of residual TH in parkinsonian brain suggests such molecular changes in TH molecules as result in a compensatory increase in TH activity.Special issue dedicated to Dr. Sidney Udenfriend.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号