首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes.  相似文献   

2.
Semi-supervised clustering algorithms are increasingly employed for discovering hidden structure in data with partially labelled patterns. In order to make the clustering approach useful and acceptable to users, the information provided must be simple, natural and limited in number. To improve recognition capability, we apply an effective feature enhancement procedure to the entire data-set to obtain a single set of features or weights by weighting and discriminating the information provided by the user. By taking pairwise constraints into account, we propose a semi-supervised fuzzy clustering algorithm with feature discrimination (SFFD) incorporating a fully adaptive distance function. Experiments on several standard benchmark data sets demonstrate the effectiveness of the proposed method.  相似文献   

3.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

4.
MOTIVATION: Many methods have been developed for selecting small informative feature subsets in large noisy data. However, unsupervised methods are scarce. Examples are using the variance of data collected for each feature, or the projection of the feature on the first principal component. We propose a novel unsupervised criterion, based on SVD-entropy, selecting a feature according to its contribution to the entropy (CE) calculated on a leave-one-out basis. This can be implemented in four ways: simple ranking according to CE values (SR); forward selection by accumulating features according to which set produces highest entropy (FS1); forward selection by accumulating features through the choice of the best CE out of the remaining ones (FS2); backward elimination (BE) of features with the lowest CE. RESULTS: We apply our methods to different benchmarks. In each case we evaluate the success of clustering the data in the selected feature spaces, by measuring Jaccard scores with respect to known classifications. We demonstrate that feature filtering according to CE outperforms the variance method and gene-shaving. There are cases where the analysis, based on a small set of selected features, outperforms the best score reported when all information was used. Our method calls for an optimal size of the relevant feature set. This turns out to be just a few percents of the number of genes in the two Leukemia datasets that we have analyzed. Moreover, the most favored selected genes turn out to have significant GO enrichment in relevant cellular processes.  相似文献   

5.
Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.  相似文献   

6.

Background

The goal of this work is to develop a non-invasive method in order to help detecting Alzheimer's disease in its early stages, by implementing voice analysis techniques based on machine learning algorithms.

Methods

We extract temporal and acoustical voice features (e.g. Jitter and Harmonics-to-Noise Ratio) from read speech of patients in Early Stage of Alzheimer's Disease (ES-AD), with Mild Cognitive Impairment (MCI), and from a Healthy Control (HC) group. Three classification methods are used to evaluate the efficiency of these features, namely kNN, SVM and decision Tree. To assess the effectiveness of this set of features, we compare them with two sets of feature parameters that are widely used in speech and speaker recognition applications. A two-stage feature selection process is conducted to optimize classification performance. For these experiments, the data samples of HC, ES-AD and MCI groups were collected at AP-HP Broca Hospital, in Paris.

Results

First, a wrapper feature selection method for each feature set is evaluated and the relevant features for each classifier are selected. By combining, for each classifier, the features selected from each initial set, we improve the classification accuracy by a relative gain of more than 30% for all classifiers. Then the same feature selection procedure is performed anew on the combination of selected feature sets, resulting in an additional significant improvement of classification accuracy.

Conclusion

The proposed method improved the classification accuracy for ES-AD, MCI and HC groups and promises the effectiveness of speech analysis and machine learning techniques to help detect pathological diseases.  相似文献   

7.
Selecting relevant features is a common task in most OMICs data analysis, where the aim is to identify a small set of key features to be used as biomarkers. To this end, two alternative but equally valid methods are mainly available, namely the univariate (filter) or the multivariate (wrapper) approach. The stability of the selected lists of features is an often neglected but very important requirement. If the same features are selected in multiple independent iterations, they more likely are reliable biomarkers. In this study, we developed and evaluated the performance of a novel method for feature selection and prioritization, aiming at generating robust and stable sets of features with high predictive power. The proposed method uses the fuzzy logic for a first unbiased feature selection and a Random Forest built from conditional inference trees to prioritize the candidate discriminant features. Analyzing several multi-class gene expression microarray data sets, we demonstrate that our technique provides equal or better classification performance and a greater stability as compared to other Random Forest-based feature selection methods.  相似文献   

8.
9.
10.
This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively.  相似文献   

11.
We present a method based on hierarchical self-organizing maps (SOMs) for recognizing patterns in protein sequences. The method is fully automatic, does not require prealigned sequences, is insensitive to redundancy in the training set, and works surprisingly well even with small learning sets. Because it uses unsupervised neural networks, it is able to extract patterns that are not present in all of the unaligned sequences of the learning set. The identification of these patterns in sequence databases is sensitive and efficient. The procedure comprises three main training stages. In the first stage, one SOM is trained to extract common features from the set of unaligned learning sequences. A feature is a number of ungapped sequence segments (usually 4-16 residues long) that are similar to segments in most of the sequences of the learning set according to an initial similarity matrix. In the second training stage, the recognition of each individual feature is refined by selecting an optimal weighting matrix out of a variety of existing amino acid similarity matrices. In a third stage of the SOM procedure, the position of the features in the individual sequences is learned. This allows for variants with feature repeats and feature shuffling. The procedure has been successfully applied to a number of notoriously difficult cases with distinct recognition problems: helix-turn-helix motifs in DNA-binding proteins, the CUB domain of developmentally regulated proteins, and the superfamily of ribokinases. A comparison with the established database search procedure PROFILE (and with several others) led to the conclusion that the new automatic method performs satisfactorily.  相似文献   

12.
Current feature selection methods for supervised classification of tissue samples from microarray data generally fail to exploit complementary discriminatory power that can be found in sets of features. Using a feature selection method with the computational architecture of the cross-entropy method, including an additional preliminary step ensuring a lower bound on the number of times any feature is considered, we show when testing on a human lymph node data set that there are a significant number of genes that perform well when their complementary power is assessed, but “pass under the radar” of popular feature selection methods that only assess genes individually on a given classification tool. We also show that this phenomenon becomes more apparent as diagnostic specificity of the tissue samples analysed increases.  相似文献   

13.
The recognition of protein structural folds is the starting point for protein function inference and for many structural prediction tools. We previously introduced the idea of using empirical comparisons to create a data-augmented feature space called PESS (Protein Empirical Structure Space)1 as a novel approach for protein structure prediction. Here, we extend the previous approach by generating the PESS feature space over fixed-length subsequences of query peptides, and applying a sequential neural network model, with one long short-term memory cell layer followed by a fully connected layer. Using this approach, we show that only a small group of domains as a training set is needed to achieve near state-of-the-art accuracy on fold recognition. Our method improves on the previous approach by reducing the training set required and improving the model’s ability to generalize across species, which will help fold prediction for newly discovered proteins.  相似文献   

14.
Wavelet transform has been widely applied in extracting characteristic information in spike sorting. As the wavelet coefficients used to distinguish various spike shapes are often disorganized, they still lack in effective unsupervised methods still lacks to select the most discriminative features. In this paper, we propose an unsupervised feature selection method, employing kernel density estimation to select those wavelet coefficients with bimodal or multimodal distributions. This method is tested on a simulated spike data set, and the average misclassification rate after fuzzy C-means clustering has been greatly reduced, which proves this kernel density estimation-based feature selection approach is effective.  相似文献   

15.
Inspired by theories of higher local order autocorrelation (HLAC), this paper presents a simple, novel, yet very powerful approach for wood recognition. The method is suitable for wood database applications, which are of great importance in wood related industries and administrations. At the feature extraction stage, a set of features is extracted from Mask Matching Image (MMI). The MMI features preserve the mask matching information gathered from the HLAC methods. The texture information in the image can then be accurately extracted from the statistical and geometrical features. In particular, richer information and enhanced discriminative power is achieved through the length histogram, a new histogram that embodies the width and height histograms. The performance of the proposed approach is compared to the state-of-the-art HLAC approaches using the wood stereogram dataset ZAFU WS 24. By conducting extensive experiments on ZAFU WS 24, we show that our approach significantly improves the classification accuracy.  相似文献   

16.
17.
MOTIVATION: Feature subset selection is an important preprocessing step for classification. In biology, where structures or processes are described by a large number of features, the elimination of irrelevant and redundant information in a reasonable amount of time has a number of advantages. It enables the classification system to achieve good or even better solutions with a restricted subset of features, allows for a faster classification, and it helps the human expert focus on a relevant subset of features, hence providing useful biological knowledge. RESULTS: We present a heuristic method based on Estimation of Distribution Algorithms to select relevant subsets of features for splice site prediction in Arabidopsis thaliana. We show that this method performs a fast detection of relevant feature subsets using the technique of constrained feature subsets. Compared to the traditional greedy methods the gain in speed can be up to one order of magnitude, with results being comparable or even better than the greedy methods. This makes it a very practical solution for classification tasks that can be solved using a relatively small amount of discriminative features (or feature dependencies), but where the initial set of potential discriminative features is rather large.  相似文献   

18.
Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.  相似文献   

19.
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号