首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical amendments can enhance heavy metal phytoextraction by increasing metal bioavailability for plant root uptake and translocation to shoots, and by improving plant growth. This study assessed the effect of various amendments on plant growth and metal uptake over a 30-day period. An aminopolycarboxylic acid (EDDS), amino acid (histidine), organic acid (citric acid), biosurfactant (rhamnolipid), and inorganic ligand (sulfate) were applied as amendments individually or in combination to hydroponically grown ryegrass (Lolium perenne cv. SR4500) in the presence of a metal (Cu, Cd or Pb). EDDS (1 mM) was the most effective amendment (individually and in combinations) for enhancing Cu and Pb uptake to shoot tissue, while histidine was beneficial for increasing both Cu and Cd uptake. Individual treatments of citric acid, rhamnolipid and sulfate moderately enhanced shoot concentrations of Cu and Cd only. The combination of EDDS, rhamnolipid and citric acid resulted in the highest shoot metal levels, but also caused severe phytotoxicity. Translocation to shoot tissue was generally greater for amendments with higher affinity for the metal of interest, and metal mobility appeared to be influenced by speciation. Due to potential toxicity, amendment combinations may be more effective when applied shortly before harvesting.  相似文献   

2.
Using pot experiments, the effect of the application of the biodegradable chelating agent S,S-ethylenediaminedisuccinic acid (EDDS) in hot solutions at 90 degrees C on the uptake of Cu, Pb, Zn, and Cd by corn (Zea mays L. cv. Nongda No. 108) and beans (P vulgaris L. white bean), and the potential leaching of metals from soil, were studied. When EDDS was applied as a hot solution at the rate of 1 mmol kg(-1), the concentrations and total phytoextraction of metals in plant shoots exceeded or approximated those in the shoots of plants treated with normal EDDS at the rate of 5 mmol kg(-1). On the other hand, the leaching of Cu, Pb, Zn, and Cd after the application of the hot EDDS solution at the rate of 1 mmol kg(-1) was reduced by 46%, 21%, 57%, and 35% in comparison with that from the application of normal EDDS at 5 mmol kg(-1), respectively. For treatment with 1 mmol kg(-1) of EDDS, the leached metals decreased to the levels of the control group (that without EDDS amendment) 14 d after the application of EDDS. The soil amendment with biodegradable EDDS in hot solutions may provide a good alternative to chelate-enhanced phytoextraction in enhancing metal uptake by plants and limiting metals from leaching out of the soil.  相似文献   

3.
4.
Phytoextraction of metals is frequently limited by contaminant bioavailability and plant uptake rates. Chemical amendments can be added to increase the uptake and translocation of metals to aerial biomass. A range of amendments of various types was tested for increasing the copper uptake with the test species Indian mustard and ryegrass. These included citric acid (an organic acid); histidine (an amino acid); ethylenediaminetriacetic acid (EDTA), nitrilotriacetic acid (NTA), and ethelynediaminedisuccinic acid (EDDS) (aminopolycarboxylic acids); rhamnolipid (a biosurfactant); and Triton X-100 (a synthetic surfactant). EDTA was the most effective amendment for enhancing copper uptake and translocation into the shoots of Indian mustard and ryegrass, with respective shoot tissue copper levels of 1230 and 1360 μg-Cu/g-dry weight after 10 d compared to 90 and 220 μg-Cu/g-dry weight, respectively, in the unamended treatments. However, the EDTA application resulted in symptoms of toxicity in both Indian mustard and ryegrass, leading to drastic decreases in biomass yield. The application of high levels (300 mg/L) of the biodegradable chelator EDDS was found to be effective for improving translocation of copper in both species. The NTA addition provided benefits to root and shoot growth, with increased copper translocation to shoot tissue. Tests with biosurfactants and synthetic surfactants indicated detrimental effects on copper uptake, biomass yield, and the translocation of copper from roots to shoots in both plant species.  相似文献   

5.
Organic materials with different functional groups can be used to enhance metal bioavailability. Traditional organic materials (rice straw and clover) and ethylenediamine disuccinic acid (EDDS) were applied to enhance metal uptake from polluted soil by Sedum plumbizincicola after repeated phytoextraction. Changes in pH, dissolved organic carbon (DOC) and metal concentrations were determined in the soil solution after EDDS application. Amendment of the soil with ground rice straw or ground clove resulted in higher concentrations of Cd only (by factors of 1.92 and 1.71 respectively) in S. plumbizincicola compared to control soil. Treatment with 3 mmol kg(-1) EDDS increased all the metals studied by factors of 60.4, 1.67, and 0.27 for Cu, Cd, and Zn, respectively. EDDS significantly increased soil solution DOC and pH and increased soil plant-available metals above the amounts that the plants could take up, resulting in high soil concentrations of soluble metals and high risk of ground water contamination. After repeated phytoremediation of metal contaminated soils the efficiency of metal removal declines as the concentrations of bioavailable metal fractions decline. Traditional organic materials can therefore be much more effective and environmentally friendly amendments than EDDS in enhancing phytoremediation efficiency of Cd contaminated soil  相似文献   

6.
The effects of Ethylenediamine disuccinic acid (EDDS) (0 and 5?mmol·kg?1) as a synthetic chemical amendment, vermicompost (0 and 5%w/w) as an organic amendment and their combined application were evaluated for the phytoextraction by sunflower (Helianthus annuus L.) of cadmium (Cd) and lead (Pb) at three artificial contamination levels in soils (0, 50, and 100?mg·kg?1 for Cd and 0, 100, and 200?mg·kg?1 for Pb). The results showed that the application of EDDS was the most effective method to increase Pb and Cd concentrations in both parts of the plant. The results also showed that the application of EDDS increased 9.27% shoot Pb content at 200?mg·kg?1 but decreased 15.95% shoot Cd content at 100?mg·kg?1 contamination level with respect to the respective controls. The bioavailable concentrations of Cd at 100?mg·kg?1 and Pb at 200?mg·kg?1 contamination level in the soil at the end of experiment increased 25% and 26%, respectively after the application of EDDS but vermicompost decreased 43.28% the bioavailable Pb concentration relative to their controls. Vermicompost increased the remediation factor index of Cd, thus making it the best treatment for the phytoextraction of Cd. The combined application of EDDS and vermicompost was the best amendment for Pb phytoextraction.  相似文献   

7.
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.  相似文献   

8.
Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18–45%, respectively, at the dosage of 10 mM kg?1 soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.  相似文献   

9.
A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.  相似文献   

10.
The metal accumulation potential of Chenopodium album L. grown on various amendments of tannery sludge (TS) was studied after 60 days of sapling planted. The analysis of the results showed that the levels of pH, cation exchange capacity, organic carbon, organic matter and DTPA extractable metals (except Mn) of amendments increased by the addition of tannery sludge ratio. Shoot length of the plant increased by the addition of sludge, whereas, no marked change was observed in root length, fresh and dry weight of the plant. Accumulation of the metals in the plants was found in the order; Fe > Mn > Zn > Cr > Cu > Pb > Ni > Cd. Translocation of toxic metals (Cr, Pb, Cd) in different parts of the tested plant was found in the order; leaves > stems > roots. An increase in the photosynthetic pigments, carotenoid and leaf protein contents of the plants were found to increase with increase in sludge amendments. Correlation analysis between metal accumulation in the plants with DTPA extractable metals emphasized that Mn, Ni, Cr, Pb and Cd showed positive correlation (p < 0.05), whereas, Fe, Zn and Cu showed negative correlation. Transfer factor analysis emphasized that 10% TS amendments were suitable for phytoextraction of Cr. Overall analysis of the data exhibited that the plants may be used for phytoextraction of Cr from tannery waste contaminated soil as most of the metal was accumulated in harvestable part which is a matter of serious concern, whenever used for edible purposes.  相似文献   

11.
The potential of Eichornia crassipes to serve as a phytoremediation plant in the cleaning up of metals from contaminated coastal areas was evaluated in this study. Ten metals, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V and Zn were assessed in water and the plant roots and shoots from the coastal area of Ondo State, Nigeria and the values were used to evaluate the enrichment factor (EF) and translocation factor (TF) in the plant. The critical concentrations of the metals were lower than those specified for hyperaccumulators thus classifying the plant as an accumulator but the EF and TF revealed that the plant accumulated toxic metals such as Cr, Cd, Pb and As both at the root and at the shoot in high degree, which indicates that the plant that forms a large biomass on the water surface and is not fed upon by animals can serve as a plant for both phytoextraction and rhizofiltration in phytoremediation technology.  相似文献   

12.
For the sake of cost and potential environmental risk, it is necessary to minimize the amount of chelants used in chemically enhanced phytoextraction. In the present study, a biodegradable chelating agent, EDDS was added in a hot solution at 90°C to the soil in which garland chrysanthemum (Chrysanthemum coronarium L.) and beans (Phaseolus vulgaris L., white bean) were growing. The application of hot chelant solutions was much more efficient than the application of normal chelant solutions (25°C) in improving the uptake of heavy metals by plants. When 1 mmol kg−1 of EDDS as a hot solution was applied to soil, the concentrations of Cu, Zn and Cd and the total phytoextraction by the shoots of the two plant species exceeded or approximated those in the shoots of plants treated with 5 mmol kg−1 of normal EDTA solution. The concentrations of metals in the shoots of beans were significantly correlated with the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the hot solution might play an important role in the process of chelant-enhanced metal uptake. The soil leaching study demonstrated that decreasing the dosage of chelant resulted in decreased concentrations of soluble metals in soils. On the 28th day following the application of chelant, the concentrations of soluble metals in the EDDS treated soil were not significantly different from the concentrations in the control soil to which chelants had not been applied. The application of biodegradable EDDS in hot solutions to soil may be an efficient alternative in chemically-enhanced phytoextraction to increase metal removal and to reduce possible leaching.Section Editor: J. Barcelo  相似文献   

13.
Phytoextraction has received increasing attention as a promising, cost-effective alternative to conventional engineering-based remediation methods for metal contaminated soils. In order to enhance the phytoremediative ability of green plants chelating agents are commonly used. Our study aims to evaluate whether, citric acid (CA) or elemental sulfur (S) should be used as an alternative to the ethylene diamine tetraacetic acid (EDTA)for chemically enhanced phytoextraction. Results showed that EDTA was more efficient than CA and S in solubilizing lead (Pb) from the soil. The application of EDTA and S increased the shoot biomass of wheat. However, application of CA at higher rates (30 mmol kg(-1)) resulted in significantly lower wheat biomass. Photosynthesis and transpiration rates increased with EDTA and S application, whereas these parameters were decreased with the application of CA. Elemental sulfur was ineffective for enhancing the concentration of Pb in wheat shoots. Although CA did not increase the Pb solubility measured at the end of experiment, however, it was more effective than EDTA in enhancing the concentration of Pb in the shoots of Triticum aestivum L. It was assumed that increase in Mn concentration to toxic levels in soil with CA addition might have resulted in unusual Pb concentration in wheat plants. The results of the present study suggest that under the conditions used in this experiment, CA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat compared to either EDTA or S.  相似文献   

14.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

15.
Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.  相似文献   

16.
The present study was carried out in natural stands of Typha domingensis in Lake Burullus, Egypt, to investigate (1) nutrient dynamics and heavy metals accumulation in its organs, (2) the phytoextractive potential of its organs and (3) the amount of nutrients and heavy metals released back into the water after decomposition of the dead tissues. Nitrogen concentrations were higher in the shoot than in the root and rhizome, while P, Ca, Cu, Fe, Zn and ash concentrations were higher in the root than in the rhizome and shoot. Significant differences in the concentrations of Mg, Cd, Cu and ash were assessed during the growing season of T. domingensis. The content of most nutrients and heavy metals in the shoot increased rapidly during the early growing season in February, reached maximal values in July and then decreased again. The nutrient and heavy metal contents in the below-ground portion of the plant showed an opposite trend compared to the shoot; they decreased sharply during the spring, when they were translocated, supporting the heterotrophic phase of shoot growth. However, they increased slightly from July to September and then decreased again. The transfer factors of all nutrients and heavy metals from the sediment to the below-ground organs were greater than unity. The higher translocation ratio of N in T. domingensis shoots makes it suitable for N phytoextraction from water and sediment, while the lower translocation ratios for Cd, Cu, Fe, Pb and Zn make it suitable for metal ion phytostabilisation. The dead shoot biomass of the stands at the end of 2010 amounted to 1950 g DM m−2, when the seasonal decomposition process began. With a decay rate of 0.0049 day−1, 1624 g DM m−2 is decomposed in the lake in a year. This is equivalent to releasing the following nutrient and heavy metals into the surrounding water (in g m−2): 23.4 N, 0.8 P, 19.2 Ca, 1.8 Mg, 5.6 Na, 32.8 K, 0.01 Cd, 0.01 Cu, 0.84 Fe, 0.12 Pb and 0.03 Zn.  相似文献   

17.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

18.
In this study, pot experiments were carried out to investigative the effects of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6), 6-Benzylaminopurine (6-BA), and chelator [S,S]-Ethylenediaminedisuccinic acid (EDDS) when applied to soil contaminated with cadmium (Cd). The substances were applied alone and in combination to assess their impact on biomass, Cd phytoextraction, subcellular distribution, and chemical forms in Cd hyperaccumulator Amaranthus hybridus Linn. (A. hybridus). Results showed that the treatment of EDDS alone inhibited plant growth, and raised the Cd concentration in the plant shoot and root. Treatments with DA-6 and 6-BA combined with EDDS alleviated the negative effect of EDDS on plant growth, resulting in a synergistic effect on Cd phytoaccumulation and translocation. At the subcellular level, DA-6 and 6-BA detoxified the Cd toxicity in the plant by retaining the Cd in the cell wall. On the distribution of the chemical form of Cd in plant shoot, DA-6 and 6-BA significantly decreased Cd mobility in the plant compared to EDDS. These results confirmed that combining DA-6 and 6-BA with EDDS can counteract the adverse effect of EDDS on plant growth. The treatment of 5.0 mmol kg?1 EDDS + 1 μM DA-6 was optimal for improving the remediation of A. hybridus Linn. growing in Cd contaminated soil.  相似文献   

19.
In vitro breeding and somaclonal variation were used as tools to improve the potential of Indian mustard (Brassica juncea L.) to extract and accumulate toxic metals. Calli from B. juncea were cultivated on a modified MS medium supplemented with 10–200 μM Cd or Pb. Afterwards, new B. juncea somaclones were regenerated from metal-tolerant callus cells. Three different phenotypes with improved tolerance of Cd, Zn and Pb were observed under hydroponic conditions: enhanced metal accumulation in both shoots and roots; limited metal translocation from roots to shoots; reduced accumulation in shoots and roots. Seven out of thirty individual variants showed a significantly higher metal extraction than the control plants. The improvement of metal shoot accumulation of the best regenerant (3× Cd, 1.6× Zn, 1.8× Pb) and metal extraction (6.2× Cd, 3.2× Zn, 3.8× Pb) indicated a successful breeding and selection of B. juncea, which could be used for phytoremediation purpose.  相似文献   

20.
Abstract

Using biodegradable chelators to assist in phytoextraction may be an effective approach to enhance the heavy-metal remediation efficiencies of plants. A pot experiment was conducted to investigate the effects of ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) on the growth of the arsenic (As) hyperaccumulator Pteris vittata L., its arsenic (As), cadmium (Cd), and lead (Pb) uptake and accumulation, and soil microbial responses in multi-metal(loid)-contaminated soil. The addition of 2.5-mmol kg?1 OA (OA-2.5) produced 26.7 and 14.9% more rhizoid and shoot biomass, respectively compared with the control, while EDDS and CA treatments significantly inhibited plant growth. The As accumulation in plants after the OA-2.5 treatment increased by 44.2% and the Cd and Pb accumulation in plants after a 1-mmol kg?1 EDDS treatment increased by 24.5 and 19.6%, respectively. Soil urease enzyme activities in OA-2.5 treatment were significantly greater than those in the control and other chelator treatments (p?<?0.05). A PCR–denatured gradient gel electrophoresis analysis revealed that with the addition of EDDS, CA and OA enhanced soil microbial diversity. It was concluded that the addition of OA-2.5 was suitable for facilitating phytoremediation of soil As and did not have negative effects on the microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号