首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of our study was to compare the sorption properties of a contaminated soil before and after two types of phytoremediation (natural phytoextraction vs. phytostabilization with dolomite limestone (DL) application). Soil from a pot experiment in controlled greenhouse conditions performed for two vegetation periods was used for the study. Lead, as the main contaminant in the studied soil, was easily desorbed by Cu, especially due to the increased affinity of Cu for soil organic matter; hence input of Cu to the studied soil can present another environmental risk in soils contaminated with other metals (such as Pb). In addition, the sorption behavior of chosen metals from single-element solutions differed from multielement solutions. The obtained results proved the different sorption behavior of metals in the single-element solution compared to the multi-element ones. Soil sorption behavior of Cd, Cu, and Zn decreased with the presence of the competitive metals; nevertheless, Pb sorption potential was not influenced by other competitive metals. Natural phytoextraction showed no significant effect on the sorption of Cd, Cu, Pb, and Zn onto the soil On the other hand, phytostabilization associated with DL application improved the soil sorption efficiency of all chosen metals, especially of Cu.  相似文献   

2.
Heavy metals are known to have adverse effects on soil ecosystems, while soil enzyme activities are sensitive to soil pollution. This study investigated the combined effects of Cu, Zn and Pb on the activities of invertase (IN), urease (U) and alkaline phosphatase (ALP) in soil obtained from the vicinity of a wellhead protection area via an orthogonal array (OA) design method. The experimental results showed the following: (1) Cu showed higher inhibition on the activities of all three enzymes than Zn and Pb when three metals were all present in the soil sample. IN activity, U activity and ALP activity decreased as the levels of Cu increased, and ranged from 15.9% to 55.7%, 3.57% to 78.6%, and 3.23% to 75.3%, respectively. Their lowest values were found in samples at 35 days with 400 mg/kg Cu. (2) Zn and Pb had different influences on the activities of the three enzymes. The lowest IN activity (the highest reduction 58.0%) and U activity (76.8%) were observed when Zn was at the concentration of 100 mg/kg after 35 days, whereas the highest inhibitory function of Zn on ALP activity (75.3%) was at 300 mg/kg after 7 days. When the concentration of Pb increased from 35 to 350 mg/kg, the activities of IN (62.5%) and U (69.6%) were most inhibited at 35 days and 14 days, respectively. However, when Pb was at the concentration of 500 mg/kg after 14 days, ALP activity (72.0%) showed the lowest value. (3) With respect to the three hydrolases in this study, ALP was the most sensitive to the two-variable interactive effects of Cu, Zn and Pb, especially Cu?×?Pb. It is concluded that the soil ALP activity may be a sensitive tool for assessing additive toxic effect on soil biochemical parameters. To provide more information about the potential ecological risk of chemicals on soil ecosystems, much more should be done to clearly determine the mechanisms of the combined effects of heavy metals in soil.  相似文献   

3.
New guidelines for using biosolids in UK agriculture favour the use of enhanced treated biosolids, such as dried and composted cakes, due to concerns about the potential for transfer of pathogens into the food chain. However, there is a need to ensure that their use is environmentally acceptable and does not increase the risk to potable water supplies or the food chain from other contaminants such as heavy metals and xenobiotic organic chemicals. The objective of this study was to determine whether the use of composted and dried mesophilic anaerobically digested dewatered (MADD) biosolids would increase the risk of heavy metal leaching from cultivated horizons when compared to more conventionally used MADD cake. Three biosolids (MADD sewage sludge cake - fresh, dried and composted) were mixed with a sand (typic quartzipsamments, %OM = 3.0, pH = 6.5) or a sandy loam (typic hapludalf, %OM = 4.8, pH = 7.6) at an application rate equivalent to 250 kg N/ha/y resulting in loadings of approximately Zn: 6 microg, Cu: 2 microg, Pb: 5 microg and Ni: 0.2 microg/g of soil dry weight basis. These amended soils were repacked into columns (0.4 m by 0.1 m internal diameter) and leaching of Zn, Cu, Pb and Ni was investigated following application of two 24 h simulated rainfall events of 4.5 mm/h. Water balance data and the use of conservative tracers (Cl- and Br ) showed that the hydrological regimes of each core were comparable and, thus, unlikely to account for differences in metal leaching observed. Although no significant difference (P = 0.05) was observed between biosolid amended and control soils, those amended with composted sludge consistently gave higher loss of all metals than did the control soils. Total losses of metals from compost amended soil over the two rainfall events were in the ranges, Zn:20.5-58.2, Cu:9.0-30.5, Pb:24.2-51.2 and Ni:16.0-39.8 microg metal/kg amended soil, compared with Zn:16.4-41.1, Cu:6.2-25.3, Pb:16.9-41.7, and Ni:3.7-25.4 microg metal/kg soil from the control soils. Losses of Zn, Cu, Pb and Ni from fresh MADD cake amended soils (19.8-41.3, 3.2-25.8, 21.6-51.6 and 7.6-36.5 microg metal/kg amended soil, respectively) and from dry MADD cake amended soils (10.7-36.7, 1.8-23.8, 21.2-51.2 and 6.8-39.2 microg metal/kg amended soil, respectively) were similar to the controls. Generally, quantities of metals leached followed the order Zn = Pb > Cu > Ni, which was consistent with the levels of metals in the original sludge/soil mixtures. These results suggest that composting or drying MADD biosolids is unlikely to increase the risk of groundwater contamination when compared to the use of MADD cake; therefore, the changes in UK sludge use in agriculture guidelines are satisfactory in this respect.  相似文献   

4.
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.  相似文献   

5.
利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学   总被引:32,自引:0,他引:32  
通过室内模拟试验,采用振荡淋洗的方法研究了乙二胺四乙酸(EDTA)浓度、pH、淋洗时间对重金属去除效果的影响.利用一级反应动力学模型对试验数据进行拟合,并测定了EDTA处理前后土壤中重金属形态的变化.结果表明,EDTA溶液在浓度为0.1 mol·L-1、pH 7、淋洗时间1 d的条件下能达到对污染土壤重金属的最大去除率,去除率分别为Cd 89.14%、Pb 34.78%、Cu 14.96%、Zn 45.14%.模型拟合结果表明,Cd的质量转移系数最大,其次是Zn、Pb和Cu.说明在土壤淋洗过程中,Cd和Zn最先达到质量转移的平衡状态,然后是Pb和Cu.形态分级结果表明,EDTA能有效地去除交换态、碳酸盐结合态和氧化物结合态重金属,而对有机态和残余态部分重金属作用效果不明显.  相似文献   

6.
Abstract

The contamination of toxic heavy metals was a major issue of concern in the last century. A fast-growing metal-accumulating woody plant is a promising approach for the remediation of toxic heavy metal. In this study, the transportation of heavy metals (Pb, Zn, Cu, and Cd) in Paulownia fortunei cultivated in lead-zinc slag amended with different mass ratios of peat (CK: 0; T1: 10%; T2: 20%; T3: 30%) was investigated, as well as the subcellular distribution of Pb, Zn, Cu, and Cd in Paulownia fortunei. The results showed that the accumulation content of Pb, Zn, Cu, and Cd in Paulownia fortunei were increased with peat amendment, which was in the range of 4.216?~?6.853, 20.905?~?23.017, 1.898?~?2.572, and 0.530?~?0.616?mg/pot, respectivly. The experimental group with 30% dose of peat showed the best performance on the accumulation content of Pb, Zn, Cu, and Cd, with increase rates (compared to control) of 4.088, 10.573, 1.360, and 0.294?mg/pot, respectively. The bioconcentration, translocation and transfer quantity factor of Pb, Zn, Cu, and Cd were less than 1. Fixation of cell wall and compartmentalization of vacuolar appeared to play an important role in reducing the toxicity of Pb, Zn, Cu, and Cd.  相似文献   

7.
强还原过程对设施菜地土壤重金属形态转化的影响   总被引:1,自引:0,他引:1  
设施菜地由于污水灌溉、粪肥施用等导致重金属污染.本文通过土柱淹水同时添加玉米秸秆培养和后期通水淋洗,研究强还原法对设施土壤重金属(Cd、Cu、Pb和Zn)形态转化的影响.结果表明: 强还原处理使土壤pH显著降低,玉米秸秆处理变化更显著;土壤氧化还原电位(Eh)迅速下降至-280 mV左右.玉米秸秆处理可以促进土壤中Cd、Cu、Pb和Zn活化,第9天土壤中有机物及硫化物结合态和残渣态Cd、Cu、Pb和Zn含量比重下降;至15 d培养结束,土壤中4种重金属含量较对照分别减少18.1%、19.0%、16.1%和15.7%.玉米秸秆处理可以增加土壤中Cd和Zn的溶出量,但是Cu的溶出量减少;胶体结合态Cd和Pb含量较对照增加、Cu较对照显著减少、Zn没有显著变化.强还原可以引起设施土壤重金属活化,提高蔬菜积累重金属的风险,而且其随土壤水分的运移可能导致水体的污染.  相似文献   

8.
重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性   总被引:30,自引:6,他引:30  
高等植物是生态系统中的基本组成部分。一个平衡、稳定的生态系统生产健康、优良的高等植物。反之 ,一个不稳定或受到外来污染的生态系统 ,对高等植物的生长可带来不利和可见的负面影响。因此 ,利用高等植物的生长状况监测土壤污染程度 ,是从生态学角度衡量土壤健康状况 ,评价土壤质量的重要方法之一[4 ,6] 1) 。土壤生态毒理学评价方法是对化学分析方法的重要补充。目前已建立的高等植物毒理试验有三种方法 ,即 1根伸长试验 ;2种子发芽试验 ;3早期植物幼苗生长试验[3 ,5,6,10 ] 。最初 ,这类试验主要用于纯化学品的毒性检验 ,但随着对土壤…  相似文献   

9.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

10.
为探索刺楸对受污染土壤重金属的富集和修复效应, 以南京栖霞山的乡土树种刺楸及其根际周边土壤为研究对象, 截取其根基部年轮盘及根际土壤样本, 采用ICP-AES法测定年轮及土壤样本中重金属(Cu、Cd、Cr、Mn、Ni、Pb、Zn)元素含量。结果表明: 栖霞山样地中的土壤受Mn、Pb和Zn污染最为严重, 存在Cu、Cd、Mn、Pb、Zn元素的高度复合污染, Cd、Cr、Cu、Ni、Zn在土壤和年轮中存在相关性, Mn和Pb则没有表现出明显的相关性; 刺楸修复受Cd、Mn、Pb、Zn污染的土壤效果并不显著, 更适用于Cr、Cu、Ni污染的土壤修复; 鉴于Cu元素含量变化特征, 刺楸也可以作为反映当地污染历史的记录载体; 刺楸年轮中的重金属元素之间存在交互作用, 其中Cd与Zn元素含量高度相关(r=0.984, p<0.01), 在刺楸年轮吸收重金属元素的过程中, Cu与Cd、Cr、Mn、Zn元素具有协同作用, Mn元素对其他元素有一定的拮抗作用。  相似文献   

11.
土壤重金属污染对蚯蚓的急性毒性效应研究   总被引:43,自引:9,他引:43  
测定了草甸棕壤条件下 ,Cu、Zn、Pb、Cd单一 /复合污染对蚯蚓的急性致死及亚致死效应 .结果表明 ,Cu、Pb浓度与蚯蚓死亡率显著相关 (α=0 .0 5 ,RCu=0 .86 ,RPb=0 .87) ,Cu浓度与生长抑制率显著相关 (α=0 .0 5 ,RCu=0 .84) ,其他供试重金属浓度与蚯蚓死亡率和生长抑制率相关性不显著 .蚯蚓个体对重金属毒性的耐受程度差别较大 .其毒性阈值 (引起个体蚯蚓死亡浓度 )分别为 :Cu 30 0mg·kg-1,Zn 130 0mg·kg-1,Pb 170 0mg·kg-1,Cd 30 0mg·kg-1.LC50 分别为 :Cu 40 0~ 45 0mg·kg-1,Zn15 0 0~ 190 0mg·kg-1,Pb2 35 0~ 2 40 0mg·kg-1,Cd 90 0mg·kg-1.在Cu、Zn、Pb、Cd单一污染引起 >10 %蚯蚓死亡的浓度下 ,复合污染导致 10 0 %蚯蚓死亡 ,表明复合污染极强的协同效应 .  相似文献   

12.
In a pot culture experiment, five different species of Brassica (Brassica juncea, Brassica campestris, Brassica carinata, Brassica napus, and Brassica nigra) were grown for screening possible accumulators of heavy metals, viz. Zn, Cu, Ni, and Pb. The plants were grown to maturity in a soil irrigated with sewage effluents for more than two decades in West Delhi, India. The soil analysis showed enhanced accumulation of Zn, Cu, Ni, and Pb in this sewage-irrigated soil. Among all species, B. carinata showed the highest concentration (mg kg(-1)) as well as uptake (microg pot(-1)) of Ni and Pb at maturity. Although B. campestris showed a higher concentration of Zn in its shoots (stem plus leaf), B. carinata extracted the largest amount of this metal due to greater biomass production. However, B. juncea phytoextracted the largest amount of Cu from the soil. In general, the highest concentration and uptake of metal was observed in shoots compared to roots or seeds of the different species. Among the Brassica spp., B. carinata cv. DLSC1 emerged as the most promising, showing greater uptake of Zn, Ni, and Pb, while B. juncea cv. Pusa Bold showed the highest uptake of Cu. The B. napus also showed promise, as it ranked second with respect to total uptake of Pb, Zn, and Ni, and third for Cu. Total uptake of metals by Brassica spp. correlated negatively with available as well as the total soil metal concentrations. Among the root parameters, root length emerged as the powerful parameter to dictate the uptake of metals by Brassica spp. Probably for the first time, B. carinata was reported as a promising phytoextractor for Zn, Ni, and Pb, which performed better than B. juncea.  相似文献   

13.
研究了污染土壤、油菜籽中Cd、Cu、Zn、Pb含量、形态分布特征和重金属富集状况及可能存在的生物毒性.结果表明,土壤中Cd、Zn、Pb以铁锰氧化物结合态、Cu以残留态占5种形态最高比例,分别为31.1%、39.3%、53.79%、46.24%;Cd、Pb交换态比例较高,为23.47%、16.32%,Cu、Zn的交换态比例较小,为3.14%、0.54%;土壤中不同重金属与各重金属形态相关关系有差别,5种重金属形态转化为有效态重金属难易程度不同;油菜籽和油菜籽壳中不同重金属累积趋势有差异,Cu易在油菜籽壳中累积,Cd、Zn、Pb易在油菜籽中累积;油菜籽中不同重金属累积率不同,Cd累积率最高,为0.56.油菜籽中重金属累积率与土壤中重金属总量呈显著负相关关系(P<0.05),土壤中重金属的形态、转化差异是此种负相关关系的主要原因;油菜籽中Cd、Cu、Pb以氯化钠态为主,分别为32.50%、22.94%、34.69%,Zn以EDTA态为主,为45.97%.油菜籽中重金属形态可能影响其毒性,但其毒性的人类膳食风险还需进一步研究证实.油菜籽中重金属形态与油菜中重金属总量相关性不好.  相似文献   

14.
贵州兴仁煤矿区农田土壤重金属化学形态及风险评估   总被引:2,自引:0,他引:2  
为了解煤矿区周边农田土壤重金属污染状况,采集了贵州省兴仁县某典型煤矿区农田土壤样品64份,测定了土样中重金属(As、Cr、Pb、Zn、Cd、Hg、Cu、Ni)总量及各形态含量,采用单因子指数法、潜在生态风险指数法(Hkanson法)和风险评估编码法(RAC)对研究区主要土壤利用类型(水稻土、薏米地、植烟土和菜园土)中重金属进行潜在生态风险评估和环境风险评价.结果表明: 不同利用类型土壤中重金属含量除Zn外,其他元素均明显超过贵州省背景值.单因子指数法评价结果表明,As、Pb、Hg和Cu污染较为严重,均属重度污染.形态分析表明,土壤中重金属形态构成差异明显,酸可提取态As、酸可提取态Cd所占比例较高;Cr、Zn、Cu、Ni主要以残渣态为主;Pb主要以可还原态和残渣态为主;而Hg的酸可提取态、可还原态、可氧化态均占有相当比例,三者之和大于55%.重金属可利用度大小顺序为:As(63.6%)>Hg(57.3%)>Cd(56.4%)>Pb(52.5%)>Cu(45.7%)>Zn(32.8%)>Ni(26.2%)>Cr(13.2%).潜在生态风险指数表明,各类型土壤潜在生态风险(RI)〖JP2〗为:菜园土(505.19)>薏米地(486.06)>植烟土(475.33)>水稻土(446.86),均处于较高风险.风险评估编码法结果显示,As在水稻土、薏米地及植烟土中均处于高风险,在菜园土中处于中等风险;Cd、Hg均处于中等风险,Cr、Pb、Zn、Cu和Ni均处于低风险.因此,对该区域农田土壤进行管控时应重点考虑As、Cd和Hg污染.  相似文献   

15.
The aims of this paper were to assess the variation of heavy metal (Cu and Zn) fractions and mobility in abandoned metal mine soil due to batch experimental leaching. Four solutions with different pH levels were used in the experiments. The total and fractional concentrations of heavy metals in untreated and leached soils were determined. The Kruskal–Wallis test was applied to verify the differences in the Cu and Zn distribution in soils before and after leaching. In order to assess the mobility of heavy metals, mobility factors (MFs) were calculated. The research results showed that the original/untreated soil was mainly of a sandy texture and acidic in character. After batch leaching for 7 days, the distribution of heavy metals was dominant in the residual fraction (F5). Heavy metal fractions in F1, F2, F3, and F5 showed a decreasing trend, but an increasing trend in F4 was observed. Among the solutions applied having different pH values, HCl (pH 3) illustrated the strongest effect on decreasing heavy metals in short-term mobile fractions (F1 and F2). The MF of Zn decreased more than that of Cu after 7-day batch leaching.  相似文献   

16.
Huang Y Z  Hu Y  Liu Y X 《农业工程》2009,29(6):320-326
A pot experiment was conducted to evaluate the bioaccumulation of heavy metals and growth response of rice plants after exposure to single and combined contamination by Cu, Cd and Pb. The results showed that the biomass production was not significantly affected by either single or combined treatment of Cu, Cd and Pb. Adding Cu (Cd, or Pb) separately all increased concentrations of the respective element in root and shoot (p < 0.001). In the combined contamination, Pb promoted both root and shoot absorption of Cu and Cd (p < 0.001), and Cu affected Cd and Pb absorption in the root, but Pb concentrations in both root and shoot were not affected by Cd application. The formation of iron plaques varied obviously with soil types. Heavy metal accumulation in iron plaques was induced by the three elements (p < 0.001). Furthermore, the three heavy metals exhibited an interactive relationship as measured by the Cu, Cd, Pb and Fe concentrations in root surface iron plaques. The iron plaques partially inhibited transfer of Pb to root and shoot, but no such effect was observed for Cu and Cd. This research indicates that the interaction among different heavy metal elements is very complex. It is very important to have a clear understanding on the associated mechanism and the consequential impact on plant growth.  相似文献   

17.
A pot experiment was conducted to evaluate the bioaccumulation of heavy metals and growth response of rice plants after exposure to single and combined contamination by Cu, Cd and Pb. The results showed that the biomass production was not significantly affected by either single or combined treatment of Cu, Cd and Pb. Adding Cu (Cd, or Pb) separately all increased concentrations of the respective element in root and shoot (p < 0.001). In the combined contamination, Pb promoted both root and shoot absorption of Cu and Cd (p < 0.001), and Cu affected Cd and Pb absorption in the root, but Pb concentrations in both root and shoot were not affected by Cd application. The formation of iron plaques varied obviously with soil types. Heavy metal accumulation in iron plaques was induced by the three elements (p < 0.001). Furthermore, the three heavy metals exhibited an interactive relationship as measured by the Cu, Cd, Pb and Fe concentrations in root surface iron plaques. The iron plaques partially inhibited transfer of Pb to root and shoot, but no such effect was observed for Cu and Cd. This research indicates that the interaction among different heavy metal elements is very complex. It is very important to have a clear understanding on the associated mechanism and the consequential impact on plant growth.  相似文献   

18.
Abstract

A five-step sequential extraction procedure was applied to organic-rich soil samples from five soil profiles situated 1–8 km from a zinc smelter. The partitioning of Zn, Cd, Pb, and Cu into five operationally defined fractions (exchangeable, “carbonate’’-bound, reducible, oxidizable, and residual) was studied at different soil depths down to 35cm. In the surface soil (0–1 cm) a major part of Pb and Cu was extracted in the oxidizable fraction, whereas for Zn and Cd slightly more was extracted in the ‘‘carbonate”-fraction than in the other four fractions. Extracted metal proportions in the oxidizable fraction were respectively of the order of 30%, 20%, 50%, and 80% for Zn, Cd, Pb, and Cu in the surface soil for all sites, but these proportions decreased with soil depth. In the surface soil less than 20% of all the elements were extracted in the residual fraction, but the proportions associated with this fraction generally increased with soil depth. In the C-horizon, differences in extracted proportions of Pb and Cu in the residual fraction were probably due to geochemical factors, whereas for Zn the low extracted proportion at a highly contaminated site (20%) may be due to Zn migration to the C-horizon at this site. For Cd the extracted proportions in the C-horizon were lower than for the other elements, generally below 20%, presumably because Cd is weaker in terms of its adsorption to the soil than the other elements studied. Total concentrations of the metals decreased strongly with increasing distance from the smelter, but less systematic differences were observed for their distributions among fractions. Potentially bioavailable metal proportions (exchangeable + “carbonate”-bound fraction) in the surface soil were about 50%, 60%, 20%, and 10% for Zn, Cd, Pb, and Cu, respectively. In C-horizon soil the mobility sequence Cd>Zn>Pb = Cu was generally observed. The present results indicate that the concentrations and chemical fractionation of Zn, Pb, and Cd in these soils represent a considerable risk to natural terrestrial food chains.  相似文献   

19.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

20.
为了解华南地区典型燃煤电厂周边表层土壤重金属空间分布特征,对韶关市燃煤电厂周边20处农田表层土壤中7种重金属(镍(Ni)、铜(Cu)、锌(Zn)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As))的总量进行检测,并分析了其相应的空间分布规律,同时评估了周边土壤重金属的生态风险并分析其来源。结果表明:该燃煤电厂周边土壤中重金属Ni、Cu、Zn、Cd、Pb、Cr及As的平均含量分别是17.79、19.59、159.08、3.14、111.01、96.61 mg/kg和21.48 mg/kg,Cd、Pb污染情况突出,重金属Zn、Cd、Pb、Cr的分布与盛行风向密切相关。综合污染指数法表明,Cd、Pb及Zn处于重污染状态;潜在生态风险指数法表明,Cd处于严重潜在生态风险状态;地累积指数法表明,Ni、Cu整体处于无污染状态,Cd整体处于高污染状态。多种统计方法表明,Zn、Cd、Pb及Cr受燃煤电厂影响明显,Cu、As的来源不仅受燃煤电厂等工业的影响,还与该地区农业灌溉用水密切相关,Ni的分布最为均匀,受自然因素影响明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号