首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that salicylates can change the ion permeability of root cells. Therefore the possible effects of exogenous salicylate application on lead (Pb) and copper (Cu) accumulation and its protective role against DNA damage due to metal exposure in Lemna gibba were studied. L. gibba was exposed to 5, 10, and 25 microM Pb and Cu for six days in the presence and absence of sodium salicylate (SA) (0.1, 0.5, and 1 mM). At all concentrations tested, SA application decreased Pb accumulation. On the other hand, application of 0.5 mM SA increased Cu accumulation. SA did not reduce DNA damage resulting from Pb and Cu toxicity. In summary, SA may be useful for reducing Pb accumulation, and application of SA at 0.5 mM may be useful for the phytoextraction of Cu.  相似文献   

2.
A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.  相似文献   

3.
Modulation of water relations, activities of antioxidant enzymes and ion accumulation was assessed in the plants of two wheat cultivars S-24 (salt tolerant) and MH-97 (moderately salt sensitive) subjected to saline conditions and glycinebetaine (GB) applied foliarly. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were applied to the wheat plants at the vegetative growth stage. Leaf water potential, leaf osmotic potential and turgor potential were decreased due to salt stress. Salt stress increased the Na+ and Cl accumulation coupled with a decrease in K+ and Ca2+ in the leaves and roots of both cultivars thereby decreasing tissue K+/Na+ and Ca2+/Na+ ratios. Furthermore, salt stress decreased the activities of superoxide dismutase (SOD), whereas it increased the activities of catalase (CAT) and peroxidase (POD) in both wheat cultivars. However, accumulation of GB in the leaves of both wheat cultivars was consistently increased with an increase in concentration of exogenous GB application under both non-saline and saline conditions. Accumulation of Na+ was decreased with an increase in K+ accumulation upon a consistent increase in GB accumulation under salt stress conditions thereby resulting in better K+/Na+ and Ca2+/Na+ ratios in the leaves and roots. High accumulation of GB and K+ mainly contributed to osmotic adjustment, which is one of the factors known to be responsible for improving growth and yield under salt stress. The activities of all antioxidant enzymes, SOD, CAT and POD were enhanced by GB application in cv. MH-97 under saline conditions, whereas all these except SOD were reduced in cv. S-24. It is likely that both applied GB and intrinsic SOD scavenged ROS in the tolerant cultivar thereby resulting into low activities of CAT and POD enzymes under salt stress. In conclusion, the adverse effects of salt stress on wheat can be alleviated by the exogenous application of 100 mM GB by modulating activities of antioxidant enzymes and changes in water relations and ion homeostasis. Furthermore, effectiveness of GB application on regulation of activities of antioxidant enzymes was found to be cultivar-specific.  相似文献   

4.
Catharanthus roseus (L.) G. Don. plants were grown with NaCl and CaCl2 in order to study the effect of CaCl2 on NaCl-induced oxidative stress in terms of lipid peroxidation (TBARS content), H2O2 content, osmolyte concentration, proline (PRO)-metabolizing enzymes, antioxidant enzyme activities, and indole alkaloid accumulation. The plants were treated with solutions of 80 mM NaCl, 80 mM NaCl with 5 mM CaCl2 and 5 mM CaCl2 alone. Groundwater was used for irrigation of control plants. Plants were uprooted randomly on 90 days after sowing (DAS). NaCl-stressed plants showed increased TBARS, H2O2, glycine betaine (GB) and PRO contents, decreased proline oxidase (PROX) activity, and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl2 to NaCl-stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl2 appears to confer greater osmoprotection by the additive role with NaCl in GB accumulation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased under salinity and further enhanced due to CaCl2 treatment. The NaCl-with-CaCl2-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to NaCl-treated and untreated plants.  相似文献   

5.
Hydroponics and pot experiments were conducted to study the effects of ethylenediaminetetraacetic acid (EDTA) on Pb transportation and accumulation by two contrasting ecotypes of Sedum alfredii Hance. In hydroponics experiments, the accumulating ecotype (AE) showed more ability to tolerate Pb toxicity compared with the non-accumulating ecotype (NAE). When treated with equimolar mixtures of EDTA and Pb, maximum Pb accumulation occurred without any phytotoxicity symptoms. Pot experiments with Pb contents of 400 mg kg-1 showed that 5 mM EDTA is the optimum dose for the phytoextraction of soils contaminated with relatively low Pb levels; in contrast, increasing EDTA addition resulted in increased Pb accumulation in the shoots of AE in soils with high Pb content (1200 mg kg(-1)). The post-harvest effects of EDTA on available Pb were strong compared with those without addition of EDTA (CK). Within the initial 7 days almost no differences of water-soluble Pb were noted in soils contaminated with both levels of Pb but after 2 weeks, water-soluble Pb started to decrease significantly compared with before. Considering the toxicity and biodegradability of synthetic chelators, it can be concluded that the chelate-assisted technique is more suitable for soils contaminated with low Pb levels and to avoid environment risks; a suitable dose of chelators must be considered before application.  相似文献   

6.
Two 14-day-old seedlings of maize (Zea mays L.) cultivars (3223 and Vero) were exposed to different concentrations of lead [0, 2, 5 and 8 mM Pb(NO3)2·4H2O] for 8 days. Exposure of maize cultivars to excess Pb resulted in a significant root growth inhibition though shoot growth and absolute water content remained less affected. The results of chlorophyll a fluorescence indicated that the highly toxic Pb level affected photochemical efficiency in 3223, while no significant effect was observed in the Vero. At the highly toxic Pb concentration, higher membrane leakage was observed in 3223 leaves than that of Vero. This result was related to the accumulation of Pb. On the other hand, the results suggested that there were similar responses in total soluble POD and GR activities with increasing Pb concentrations between both cultivars. But APX activity significantly decreased at highly toxic Pb level in the Vero while a significant increase observed in the 3223. However, SOD activity in 3223 significantly decreased at the highly toxic Pb concentration compared with that at 2 mM Pb concentration. The results of the present study indicated that, Vero withstands excess Pb with its higher Pb accumulation capacity in roots and better upregulated protective mechanisms compared to 3223. Therefore, Vero is more tolerant to Pb toxicity compared to 3223 which was found to be a less tolerant cultivar.  相似文献   

7.
Lead and cadmium accumulation examined in shoot and leaf tissues of seedlings of mustard (Brassica juncea cv RH-30), at 7th day, treated with either putrescine (1 mM), or ammonium nitrate (10 mM) or IAA (10 microM). These were included in the nutrient medium, containing Pb or Cd (0.1 mM and 2 mM). Metal accumulation was more in shoot than in leaf tissues, which was increased manifold under saline conditions. However, Cd accumulation in tissues was higher than Pb. Chemical (putrescine, ammonium nitrate or IAA) treatment of the seedlings, decreased metal accumulation in leaf (10-20%) and in shoot (40 to 60%) tissues, depending upon external metal levels. Putrescine significantly decreased the metal accumulation and translocation under saline conditions.  相似文献   

8.
Glycine betaine (GB) is an effective compatible solute that improves the tolerance in plants to various stresses. We investigated the effects of 2 mM GB applied to the roots of a tobacco (Nicotiana tabacum L.) cultivar on enhancing photosynthesis under low-temperature (LT) stress (5/5 °C, 12/12 h, 300 μmol m−2 s−1) and in the subsequent recovery (25/18 °C) from the stress. The net photosynthetic rate, intrinsic efficiency measured as the ratio of variable to maximum fluorescence, and actual efficiency of the photochemistry of photosystem 2 as well as the ATPase activity in the thylakoid membrane decreased, and a distinct K step in the fluorescence transient O-J-I-P appeared under cold stress. Exogenous GB alleviated the decrease in all these parameters. The LT-stress induced the accumulation of 33–66 kDa polypeptides and decreased the proportion of unsaturated fatty acids in the thylakoid membrane. In plants subjected to LT-stress, GB protected these polypeptides from damage and enhanced the proportion of unsaturated fatty acids. An increase in non-radiative energy dissipation (NPQ) may be involved in the improvement of the function of the thylakoid membrane by GB since exogenous GB protected violaxanthin de-epoxidase and enhanced NPQ.  相似文献   

9.
Triflusal (TR) is a new salicylic acid derivative used clinically as an antiplatelet drug. Both aspirin (ASA) and TR inhibit platelet cyclooxygenase but the effects of these drugs are different. TR (0.5-2 mM) strongly inhibited platelet aggregation and malondialdehyde formation induced by arachidonic acid. The IC50 was 0.8 mM for TR and less than 0.1 mM for ASA. Deacetylated compounds, salicylic acid (SA) and HTB (the main metabolite of TR) were apparently competitive and reversible inhibitors of cyclooxygenase and HTB was 15 times more potent than SA. They did, however, partially prevent the inhibitory effects of ASA and TR in vitro. A similar effect was observed ex vivo in rats treated with HTB (100 mg/k i.p.) before TR or ASA (20 and 5 mg/kg i.v., respectively). Moreover, TR at 10 and 20 mg/kg i.v., inhibited thromboxane production by more than 50% while its effect on vascular cyclooxygenase was negligible. These findings indicated that TR is a weaker inhibitor of cyclooxygenase than ASA, and that HTB interferes with the effect of TR and ASA, despite the fact that HTB is a more potent reversible inhibitor than SA with probably a higher affinity for this enzyme.  相似文献   

10.
The effects of lead ions on creatine kinase (CK) were studied by measuring activity changes, intrinsic fluorescence spectra and 8-anilo-1-naphthalenesulfonate (ANS)-binding fluorescence along with size-exclusion chromatography (SEC). Below 5 mM Pb(2+) concentration, there was nearly no change of the enzyme activity and a slight change of the ANS-binding fluorescence. The CK activity decreased significantly from 10 to 25 mM Pb(2+) concentrations. No residual activity was observed above 25 mM Pb(2+). The kinetic time courses of inactivity and unfolding were all mono-phase courses with the inactivation rate constants being greater than the unfolding rate constants for the same Pb(2+) concentration. The changes in fluorescence maximum and fluorescence intensity were relatively slow for 40-80 mM Pb(2+) as well as in the initial stage for less than 5 mM Pb(2+), showing that two transition states exist for Pb(2+) induced equilibrium-unfolding curves. The intrinsic fluorescence spectra and ANS-binding fluorescence measurements showed that even for high Pb(2+) concentrations, CK did not fully unfold. Additionally, the SEC results showed that the enzyme molecule still existed in an inactive dimeric state at 20 and 40 mM Pb(2+) solutions. All the results indicated the presence of at least one stable unfolding equilibrium intermediate of CK during Pb(2+) unfolding.  相似文献   

11.
Enhancing phytoremediative ability of Pisum sativum by EDTA application   总被引:5,自引:0,他引:5  
The aim of our research was to demonstrate how the presence of EDTA affects resistance of pea plants to Pb and Pb-EDTA presence, and to show the effectivity of lead ions accumulation and translocation. It was determined that EDTA not only increased the amount of Pb taken up by plants but also Pb ion transport through the xylem and metal translocation from roots to stems and leaves. It can be seen in the presented research results that addition of the chelator with Pb limited metal phytotoxicity. We also demonstrated a significant effect of EDTA not only on Pb accumulation and metal transport to the aboveground parts but also on the profile and amount of thiol compounds: glutathione (GSH), homoglutathione (hGSH) or phytochelatins (PCs), synthesized by the plants. We observed a significant effect of the synthetic chelator on increasing the level of Pb accumulation in roots of plants treated with Pb including EDTA (0.5 and 1 mM). Pisum sativum plants treated only with 1 mM Pb(NO3)2 accumulated over 50 mg Pb x g(-1) dry wt during 4 days of cultivation. Whereas in roots of pea plants exposed to Pb+0.5 mM EDTA 35% more Pb was observed. When 1 mM EDTA was applied roots of pea accumulated over 67% more metal. The presence of EDTA also increased metal uptake and transport to the aboveground parts. In pea plants treated only with 1 mM lead nitrate less than 3 mg Pb x g(-1) dry wt was transported, whereas in P. sativum treated with Pb-EDTA doubled amount of Pb was observed in stems and leaves.  相似文献   

12.
Xu Y  Yamaji N  Shen R  Ma JF 《Annals of botany》2007,99(5):869-875
BACKGROUND AND AIMS: Ethylene diamine tetraacetic acid (EDTA)-assisted phytoremediation has been developed to clean up lead (Pb)-contaminated soil; however, the mechanism responsible for the uptake of EDTA-Pb complex is not well understood. In this study, the accumulation process of Pb from EDTA-Pb is characterized in comparison to ionic Pb [Pb(NO(3))(2)] in sorghum (Sorghum bicolor). METHODS: Sorghum seedlings were exposed to a 0.5 mM CaCl(2) (pH 5.0) solution containing 0, 1 mM Pb(NO(3))(2) or EDTA-Pb complexes at a molar ratio of 1:0.5, 1:1, 1:2 and 1:4 (Pb:EDTA). The root elongation of sorghum at different ratios of Pb:EDTA was measured. Xylem sap was collected after the stem was severed at different times. The concentration of Pb in the shoots and roots were determined by an atomic absorption spectrometer. In addition, the roots were stained with Fluostain I for observation of the root structure. KEY RESULTS: Lead accumulation in the shoots of the plants exposed to EDTA-Pb at 1:1 ratio was only one-fifth of that exposed to ionic Pb at the same concentration. Lead accumulation decreased when transpiration was suppressed. The concentration of Pb in the xylem sap from the EDTA-Pb-treated plants was about 1/25,000 of that in the external solution. Root elongation was severely inhibited by ionic Pb, but not by EDTA-Pb at a 1:1 ratio. Root staining showed that a physiological barrier was damaged in the roots exposed to ionic Pb, but not in the roots exposed to EDTA-Pb. CONCLUSIONS: All these results suggest that sorghum roots are inefficient in uptake of EDTA-chelated Pb and that enhanced Pb accumulation from ionic Pb was attributed to the damaged structure of the roots.  相似文献   

13.
Drought stress negatively impacts growth and physiological processes in plants. The foliar application of glycine betaine (GB) is an effective and low-cost approach to improve the drought tolerance of trees. This study examined the effect of exogenously applied GB on the cell membrane permeability, osmotic adjustment, and antioxidant enzyme activities of Phoebe hunanensis Hand.-Mazz under drought stress. Two levels (0 and 800 mL) of water irrigation were tested under different applied GB concentrations (0, 50, 100, and 200 mM). Drought stress decreased the relative water content by 58.5% while increased the electric conductivity, malondialdehyde, proline, soluble proteins, soluble sugars, and antioxidant enzyme activities (superoxide dismutase, catalase, peroxidase) by up to 62.9%, 42.4%, 87.0%, 19.1%, 60.5%, 68.3%, 71.7%, and 83.8%, respectively, on the 25th day. The foliar application of GB, especially at 100 mM, increased the relative water content of P. hunanensis leaves under drought stress. The concentration of GB from 50 to 100 mM effectively alleviated the improvement of cell membrane permeability and inhibited the accumulation of membrane lipid peroxidation products. Under drought stress, the concentrations of proline, soluble proteins, and soluble sugars in the leaves of P. hunanensis increased as the applied GB concentration was increased and the water stress time was prolonged. Exogenously applied GB decreased oxidative stress and improved antioxidant enzyme activities as compared with treatments without GB application. Furthermore, the physiological and biochemical indexes of P. hunanensis showed a certain dose effect on exogenous GB concentration. These results suggest that GB helps maintain the drought tolerance of P. hunanensis.  相似文献   

14.
15.
We have shown that stevioside (SVS) enhances insulin secretion and thus may have a potential role as antihyperglycemic agent in the treatment of type 2 diabetes mellitus. However, whether SVS stimulates basal insulin secretion (BIS) and/or cause desensitization of beta cells like sulphonylureas (SU), e.g. glibenclamide (GB), is not known. To explore and compare the effects of SVS pretreatment with those of GB and glucagon-like peptide-1 (GLP-1), we exposed isolated mouse islets to low or high glucose for 1 h after short-term (2 h) or long-term (24 h) pretreatment with SVS, GB or GLP-1, respectively. BIS at 3.3 or 5.5 mM glucose were not changed after short-term pretreatment with SVS (10(-7) M), while it increased about three folds after pretreatment with GB (10(-7) M). Glucose stimulated insulin secretion (GSIS) (16.7 mM) increased dose-dependently after long-term pretreatment with SVS at concentrations from 10(-7) to 10(-5) M. Pretreatment for 24 h with GB (10(-7) M) increased the subsequent BIS (3.3 mM glucose) (p < 0.001), but decreased GSIS (16.7 mM glucose) (p < 0.001). In contrast SVS (10(-7) M) and GLP-1 (10(-7) M) did not stimulate BIS but both enhanced the subsequent GSIS (16.7 mM glucose) (p < 0.05 and p < 0.05, respectively). While SVS pretreatment increased the intracellular insulin content, GB pretreatment decreased the insulin content. Our study suggests that SVS pretreatment does not cause a stimulation of BIS and does not desensitize beta-cells, i.e. SVS seems to have advantageous characteristics to GB as a potential treatment of type 2 diabetes.  相似文献   

16.
A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.  相似文献   

17.
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.  相似文献   

18.
Choline may affect salt tolerance by regulating lipid and glycine betaine (GB) metabolism. This study was conducted to determine whether alteration of lipid profiles and GB metabolism may contribute to choline regulation and genotypic variations in salt tolerance in a halophytic grass, seashore paspalum (Paspalum vaginatum). Plants of Adalayd and Sea Isle 2000 were subjected to salt stress (200-mM NaCl) with or without foliar application of choline chloride (1 mM). Genotypic variations in salt tolerance and promotive effects of choline application on salt tolerance were associated with both the up-regulation of lipid metabolism and GB synthesis. The genotypic variations in salt tolerance associated with lipid metabolism were reflected by the differential accumulation of phosphatidylcholine and phosphatidylethanolamine between Adalayd and Sea Isle 2000. Choline-induced salt tolerance was associated with of the increase in digalactosyl diacylglycerol (DGDG) content including DGDG (36:4 and 36:6) in both cultivars of seashore paspalum and enhanced synthesis of phosphatidylinositol (34:2, 36:5, and 36:2) and phosphatidic acid (34:2, 34:1, and 36:5), as well as increases in the ratio of digalactosyl diacylglycerol: monogalactosyl diacylglycerol (DGDG:MGDG) in salt-tolerant Sea Isle 2000. Choline regulation of salt tolerance may be due to the alteration in lipid metabolism in this halophytic grass species.  相似文献   

19.
The effects of Cd and Pb on membrane potential (E(m)) and photoelectric reaction of Nitellopsis obtusa cells were investigated. It was found that Cd and Pb at 1.0 mM caused a depolarization of the E(m), whereas both metals at lower concentrations changed the E(m) in a different way. Pb at 0.1 mM and 0.01 mM hyperpolarized the E(m), whereas Cd at the same concentrations depolarized and did not change the E(m), respectively. In the presence of 0.01 mM Pb, the light-induced hyperpolarization of the E(m) was by 18% higher as compared to the control, whereas at 1.0 mM Pb it was by 40% lower. Pb at 0.1 mM and Cd at 0.01 mM or 5 × 0.01 mM did not change the light-induced membrane hyperpolarization. However, in the presence of Cd at 0.1 mM and 1.0 mM this hyperpolarization was 2-fold lower or was completely abolished, respectively. These results suggest that at high Cd and Pb concentrations both depolarization of the E(m) and decrease of light-induced membrane hyperpolarization in Nitellopsis obtusa cells are probably due to inhibition of the plasma membrane H(+)-ATPase activity, whereas both metals at lower concentrations differ in mechanism of membrane potential changes.  相似文献   

20.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号