首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determinations of colloid osmotic pressure in the supernatant of germfree rat cecal contents indicated substantially elevated values in comparison to those of rat blood plasma or of conventional rat cecal supernatant. The germfree cecal supernatant, under conditions of similar total osmolality, was able to draw water at a sizable rate from a polyvinylpyrollidone solution whose colloid osmotic pressure was taken to be equivalent to that of interstitial fluid. It is suggested that the water absorption inhibition which was observed in the lower bowel of germfree rodents, is in part caused by the colloid osmotic pressure gradient which exists in these animals between the luminal contents and the tissue component.  相似文献   

2.
Intravenously administered cyclic [8-3H]AMP to rats was quickly eliminated from the circulation. After 2 min 93% of the administered radioactivity disappeared from the plasues was recovered mainly in the form of nucleotides, ATP, ADP, AMP and IMP. In vitro contact of cyclic AMP with perfused liver, isolated liver cells and adipose tissue resulted in a rapid breakdown of the nucleotide, presumably on the outer surface of the cells. The degradation products have been identified mainly as adenosine and inosine. Incubation of adipose tissue and isolated liver cells with [3H] AMP also resulted in the breakdown of the nucleotide in themedium. The rate of AMP degradation by these tissues was faster than that for cyclic AMP degradation. The data suggest that cyclic AMP is readily metabolized on the outer surface of cells to products which may be converted within the cells to nucleotides. These findings seem of importance for the quantitative assessments of cellular cyclic AMP outflow during hormonal stimulation.  相似文献   

3.
Intravenously administered cyclic [8-3H]AMP to rats was quickly eliminated from the circulation. After 2 min 93% of the administered radioactivity disappeared from the plasma, and most of it was recovered in the kidney, liver and muscles. The label in the tissues was recovered mainly in the form of nucleotides, ATP, ADP, AMP and IMP.In vitro contact of cyclic AMP with perfused liver, isolated liver cells and adipose tissue resulted in a rapid breakdown of the nucleotide, presumably on the outer surface of the cells. The degradation products have been identified mainly as adenosine and inosine.Incubation of adipose tissue and isolated liver cells with [3H]AMP also resulted in the breakdown of the nucleotide in the medium. The rate of AMP degradation by these tissues was faster than that for cyclic AMP degradation.The data suggest that cyclic AMP is readily metabolized on the outer surface of cells to products which may be converted within the cells to nucleotides. These findings seem of importance for the quantitative assessments of cellular cyclic AMP outflow during hormonal stimulation.  相似文献   

4.
Water deficit-induced ABA accumulation in relation to cellular water relations was investigated in maize root and leaf tissues. While polyethylene glycol (PEG) treatment led to a significant increase of ABA content in both root and leaf tissues, ethylene glycol (EG), a permeable monomer of PEG, had no effect on ABA accumulation at similar or much lower osmotic potentials. A rapid and massive accumulation of ABA in leaf tissues occurred at a specific threshold of PEG 6000 concentration, about 20% (w/v), and closely coincided with the start of the tissue weight loss and the obvious decrease of cellular osmotic potential. Pretreatment with EG lowered the cell sap osmotic potential and also lowered the capability of both root and leaf tissues to accumulate ABA in response to further air-drying or PEG treatment. When samples were dehydrated and incubated under pressure, a method to maintain high water potential and pressure potential during dehydration, ABA accumulation was similar to those dehydrated and incubated under atmospheric pressure. Such results suggest that both the absolute water potential and pressure potential per se had no direct effects on the dehydration-induced ABA accumulation. The results have provided evidence that the initiation of ABA accumulation is related to the weight loss of tissues or changes in cellular volume rather than the cell water relation parameters, and the capability of ABA accumulation can be regulated by cellular osmotic potential.  相似文献   

5.
The colloid osmotic pressures of invertebrate body fluids.   总被引:2,自引:0,他引:2  
Colloid osmotic pressures of the body fluids of twenty invertebrate species were measured directly. The results, which are generally lower than predicted values for the same species, pertain to several physiological questions: (1) they do not quantitatively explain the frequently observed hyperosmoticity of body fluids in species believed to be osmoconformers, indicating that the condition cannot be merely a consequence of a Gibbs-Donnan equilibrium; (2) the excess of hydrostatic over colloid osmotic pressure is very small. This result supports the hypothesis that the oxygen transport function of bloods with extracellular haemocyanins and haem proteins is limited by their colligative properties; (3) the pressure relationships and the absence of colloid osmotic activity in urine indicates that filtration contributes to urine formation in several species.  相似文献   

6.
In insects, the excretory system is comprised of the Malpighian tubules (MTs) and the hindgut, which collectively function to maintain ionic and osmotic balance of the haemolymph and rid the organism of toxic compounds or elements in excess. Secretion by the Malpighian tubules of insects is regulated by a variety of hormones including peptidergic factors as well as biogenic amines. In Rhodnius prolixus, two endogenous diuretic hormones have been identified; the biogenic amine serotonin (5-hydroxytryptamine, 5-HT) and the corticotropin releasing factor-related peptide, RhoprCRF. Both factors significantly increase secretion by MTs and are known to elevate intracellular levels of cAMP. Interestingly, applying sub-maximal doses of these two diuretic factors in combination on isolated MTs in vitro reveals synergistic effects as rates of fluid secretion are significantly higher than would be expected if rates of secretion from MTs treated with each factor alone were summed. This observed synergism suggests that different downstream targets may be activated by the two diuretic factors, but that some cellular elicitors may be shared since cAMP is elevated in response to either diuretic hormone.  相似文献   

7.
Access to interstitial fluid is of fundamental importance to understand tumor transcapillary fluid balance, including the distribution of probes and therapeutic agents. Tumors were induced by gavage of 9,10-dimethyl-1,2-benzanthracene to rats, and fluid was isolated after anesthesia by exposing tissue to consecutive centrifugations from 27 to 6,800 g. The observed (51)Cr-EDTA (extracellular tracer) tissue fluid-to-plasma ratio obtained from whole tumor or from superficial tumor tissue by centrifugation at 27-424 g was not significantly different from 1.0 (0.92-0.99), suggesting an extracellular origin only. However, fluid collected from excised central tumor parts had a significantly lower ratio (0.66-0.77) for all imposed G forces, suggesting dilution by fluid deriving from a space unavailable for (51)Cr-EDTA. The colloid osmotic pressure in tumor fluid was generally higher than in fluid isolated from the subcutis, attributable to less selective capillaries and impaired lymphatic drainage in tumors. HPLC analysis of tumor fluid showed that low-molecular-weight macromolecules not present in arterial plasma were present in tumor fluid obtained by centrifugation and in venous blood draining the tumor, most likely representing proteins derived from tumor cells. We conclude that low-speed centrifugation may be a simple and reliable method to isolate interstitial fluid from tumors.  相似文献   

8.
The effects of hetastarch on microvascular fluid flux were determined in anesthetized dogs undergoing extracorporeal life support (ECLS) with a roller pump and membrane oxygenator. ECLS with a lactated Ringer priming solution resulted in a decrease in microvascular protein reflection coefficient and an increase in transvascular protein clearance. Use of a 6% hetastarch priming solution attenuated the decrease in microvascular protein reflection coefficient and blunted the increase in transvascular protein clearance. Ileal tissue water increased in the group treated with the lactated Ringer priming solution compared with the group treated with 6% hetastarch. The effective plasma-to-interstitial colloid osmotic pressure gradient was greater in the group treated with hetastarch than in the group treated with lactated Ringer solution. Hetastarch decreases the edema associated with ECLS. The reduction in edema is due to the maintenance of the plasma-to-interstitial colloid osmotic pressure gradient and the reduction in the microvascular permeability to protein.  相似文献   

9.
Osmotic stress constitutes a major bacterial stress factor in the soil and during industrial fermentation. In this paper, we quantified the metabolic response, in terms of metabolic flux redistribution, of a lysine-overproducing strain of Corynebacterium glutamicum grown under continuous culture, to gradually increasing osmolality. Oxygen and carbon dioxide evolution rates, and the changes in concentration of extracellular, as well as intracellular, metabolites were measured throughout the osmotic gradient. The metabolic fluxes were estimated from these measurements and from the mass balance constraints at each metabolite-node of the assumed metabolic reaction network. Our results show that formation rates of compatible solutes--trehalose first and proline at a later stage of the gradient--increased with osmotic stress to equilibrate the external osmotic pressure. Estimated flux distributions indicate that the observed increase in the glucose specific uptake rate with osmotic stress is channeled through the main energy generating pathways-- glycolysis and the tricarboxylic acid cycle--while the flux through the pentose phosphate pathway remains constant throughout the gradient. This results in a significant increase in the net specific ATP production rate, which may possibly be used to support the higher energy requirements required for cellular maintenance at high osmolalities. Finally, nodal analysis confirmed that the PEP/pyruvate node is essentially rigid and that the glucose-6-phosphate, oxaloacetate and alpha-ketoglutarate nodes are flexible and therefore adaptable to changes in osmotic pressure in C. glutamicum.  相似文献   

10.
The theoretical calculation about the dependence of the ionic current density across the cellular membrane on the intensity of the magnetic field applied to cellular tissue is presented. This interaction induces changes in the magnitude of the ionic current density across the cellular membrane and in the ionic concentration, and it also causes alterations in the osmotic pressure and in the capacity of the cellular tissues to absorb water. The magnetic field dependence of the ionic current densities J(p) (B) (positive ions) and J(n) (B) (negative ions), the membrane conductivity sigma (B), the ionic concentration in both membrane sides c(B), the osmotic pressure pi (B), and the water uptake rate by seeds k(w) (B) are presented. The increase in water uptake rate due to the applied magnetic field may be the explanation of the recently reported increase in the germination speed of the seeds treated with stationary magnetic fields.  相似文献   

11.
To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head-down for 8 h, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.7 +/- 1.5 mmHg (mean +/- SE) pre-HDT to 33.9 +/- 1.7 mmHg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, whereas interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressure dropped significantly by 4 h of HDT (21.5 +/- 1.5 mmHg pre-HDT to 18.2 +/- 1.9 mmHg), suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 h of seated recovery from HDT, microvascular pressures in the lip (capillary and venule pressures) remained significantly elevated by 5-8 mmHg above baseline values. During HDT, urine output was 126.5 ml/h compared with 46.7 ml/h during the control baseline period. These results suggest that facial edema resulting from HDT is caused primarily by elevated capillary pressures and decreased plasma colloid osmotic pressures. The negativity of interstitial fluid pressures above heart level also has implications for maintenance of tissue fluid balance in upright posture.  相似文献   

12.
The submandibular gland transports fluid at a high rate through the interstitial space during salivation, but the exact level of all forces governing transcapillary fluid transport has not been established. In this study, our aim was to measure the relation between interstitial fluid volume (V(i)) and interstitial fluid pressure (P(if)) in salivary glands during active secretion and after systemically induced passive changes in gland hydration. We tested whether interstitial fluid could be isolated by tissue centrifugation to enable measurement of interstitial fluid colloid osmotic pressure. During control conditions, V(i) averaged 0.23 ml/g wet wt (SD 0.014), with a corresponding mean P(if) measured with micropipettes of 3.0 mmHg (SD 1.3). After induction of secretion by pilocarpine, P(if) dropped by 3.8 mmHg (SD 1.5) whereas V(i) was unchanged. During dehydration and overhydration of up to 20% increase of V(i) above control, a linear relation was found between volume and pressure, resulting in a compliance (DeltaV(i)/DeltaP(if)) of 0.012 ml.g wet wt(-1).mmHg(-1). Interstitial fluid was isolated, and interstitial fluid colloid osmotic pressure averaged 10.4 mmHg (SD 1.2), which is 64% of the corresponding level in plasma. We conclude that P(if) drops during secretion and, thereby, increases the net transcapillary pressure gradient, a condition that favors fluid filtration and increases the amount of fluid available for secretion. The reduction in P(if) is most likely induced by contraction of myoepithelial cells and suggests an active and new role for these cells in salivary secretion. The relatively low interstitial compliance of the organ will enhance the effect of the myoepithelial cells on P(if) during reduced V(i).  相似文献   

13.
Protein accumulation in growing cells may be due in part to a reduction in the rate of protein breakdown. Previous studies of the relation of cell proliferation to protein degradation often produced growth arrest by conditions that may involve nutritional deprivation. However, nutrient lack can itself accelerate proteolysis and produce negative protein balance. We therefore reexamined the relation between growth and protein breakdown using a more selective method for limiting cell growth. We produced quiescent cell cultures using a chemically defined, serum-free medium supplemented with hormones and nutrients. Such media can maintain viability and near neutral protein balance in cultured vascular smooth muscle cells, in part because of reduced breakdown of cellular protein. We then compared rates of protein degradation in these quiescent but not starving cells, to those of cultures stimulated to grow by addition of mitogenic substances. Platelet-derived growth factor, fibroblast growth factor, or fetuin added to insulin-containing medium stimulated growth of smooth muscle cells, but further reduced protein breakdown only slightly. Contrary to the implications of certain previous studies, our results show that proliferating cells can accumulate protein without an appieciable reduction in the rates of protein breakdown. Thus, while accelerated proteolysis appears to be an important adaptation to adverse nutritional conditions, growth of smooth muscle cells does, not require changes in overall protein breakdown, but occurs primarily through an increase in protein synthesis.  相似文献   

14.
Plants often tolerate water deficits by lowering the osmotic potential of their cell sap. This may be achieved by accumulation of solutes which results in the maintenance of a positive turgor potential. In this study, the effect of water deficit on sugar uptake was investigated in leaf discs of Phaseolus coccinius L. (cv. Scarlet). Evidence is presented that cell turgor affects the kinetics of sugar transport at the membrane level. Uptake kinetics of sucrose, glucose and 3-O-methyl glucose by tissues equilibrated in solutions of relatively high (200–400 mOsm) osmotic concentration consisted of a sat-urable and a linear component. Low external osmotic concentration i.e., high cellular turgor inhibited the saturating component of sucrose uptake, resulting in a linear uptake profile. However, high cell turgor had no effect on glucose or 3-O-methyl glucose uptake kinetics. The effect of turgor versus osmotic component of water potential was differentiated by comparing responses to non-penetrating (manmtol) or polyethylene glycol, (3350) and penetrating (ethylene glycal) osmotica. Changes in sucrose uptake rates and kinetics were due to changes in cellular turgor and not osmotic potential. Furthermore, at low cellular turgor, a net increase in sucrose uptake occurred as a consequence of enhanced influx rates and not as a result of reduced efflux rates. The data are consistent with previous findings that sugar uptake rates are enhanced under low turgor. We present first evidence indicating that the mechanism by which higher rates of sucrose uptake are maintained underwater deficit conditions is by the activation of the saturable transport system. This mechanism supports previous suggestions that changes in cell turgor are sensed and manifested at the membrane level.  相似文献   

15.
Skeletal muscle tissue is highly susceptible to sustained compressive straining, eventually leading to tissue breakdown in the form of pressure sores. This breakdown begins at the cellular level and is believed to be triggered by sustained cell deformation. To study the relationship between compressive strain-induced muscle cell deformation and damage, and to investigate the role of cell-cell interactions, cell-matrix interactions and tissue geometry in this process, in vitro models of single cells, monolayers and 3D tissue analogs under compression are being developed. Compression is induced using specially designed loading devices, while cell deformation is visualised with confocal microscopy. Cell damage is assessed from viability tests, vital microscopy and histological or biochemical analyses. Preliminary results from a 3D cell seeded agarose model indicate that cell deformation is indeed an important trigger for cell damage; sustained compression of the model at 20% strain results in a significant increase in cell damage with time of compression, whereas damage in unstrained controls remains constant over time.  相似文献   

16.
The influence of osmotic stress on proline catabolism in the diatom Phaeodactylum tricornutum and the fate of proline after relaxation of osmotic stress are described. The conversion of 14C-proline into metabolic products is greatly inhibited during water stress conditions. A sudden reversal of osmotic stress from 1.9 to 0.77 osmolar in the algal medium leads to a rapid decrease of the cellular proline concentration. This is mainly due to a release of proline into the outside medium of the algal cells, caused by a temporary breakdown of selective permeability in the plasmamembrane. The magnitude of membrane leakage depends on the concentration differences applied. It is supposed that the altered barrier properties reflect an increase in membrane fluidity, as a consequence of osmotic downshock. A replacement of NaCl by KCl, during continued osmotic stress, leads to a rapid and irreversible breakdown of selective permeability in the plasmamembrane. This effect might be due to a special lipid composition of the plasmamembrane or caused by an influence on the membrane potential.  相似文献   

17.
Measurements were made of total proteins, albumin, and colloid osmotic pressure on cord blood samples from 15 infants with erythroblastosis fetalis (six of whom were hydropic) and from 151 non-rhesus non-hydropic control infants. The erythroblastotic infants had levels of total protein and albumin which fell within the normal range for gestational age, but their colloid osmotic pressures were abnormally low. It seems that low colloid osmotic pressure may provide a reasonable explanation for the occurrence of hydrops fetalis.  相似文献   

18.
The joint is a discrete unit that consists of cartilage, bone, tendon and ligaments. These tissues are all composed of an extracellular matrix made of collagens, proteoglycans and specialised glycoproteins that are actively synthesised, precisely assembled and subsequently degraded by the resident connective tissue cells. A balance is maintained between matrix synthesis and degradation in healthy adult tissues. Different classes of proteinases play a part in connective tissue turnover in which active proteinases can cleave matrix protein during resorption, although the proteinase that predominates varies between different tissues and diseases. The metalloproteinases are potent enzymes that, once activated, degrade connective tissue and are inhibited by tissue inhibitors of metalloproteinases (TIMPs); the balance between active matrix metalloproteinases and TIMPs determines, in many tissues, the extent of extracellular matrix degradation. The serine proteinases are involved in the initiation of activation cascades and some, such as elastase, can directly degrade the matrix. Cysteine proteinases are responsible for the breakdown of collagen in bone following the removal of the osteoid layer and the attachment of osteoclasts to the exposed bone surface. Various growth factors increase the synthesis of matrix and proteinase inhibitors, whereas cytokines (alone or in combination) can inhibit matrix synthesis and stimulate proteinase production and matrix destruction.  相似文献   

19.
Abstract Ectothiorhodospira halochloris reacts upon enhancement of the water activity in the environment by excreting its major compatible solute, glycine betaine, thus decreasing the osmotic pressure inside the cell. A suddenly induced dilution stress leads to an overshoot of this reaction, so that more glycine betaine than necessary to compensate the external osmotic change is released. Subsequently the cells take up glycine betaine until they reach osmotic balance with the medium. E. halochloris possesses an active transport system that allows an uptake of glycine betaine against a concentration gradient. Glycine betaine is not metabolized in E. halochloris . Ectoine, a minor compatible solute of E. halochloris , is excreted in a similar manner to that of glycine betaine during dilution stress, whereas no excretion of the third compatible solute, trehalose, was detected.  相似文献   

20.
In pregnant rats significant interstitial fluid pressure changes could be detected by means of capsules chronically implanted into the subcutaneous tissue. The capsular pressure increased significantly from a control value of -4.3 +/- 0.5 mmHg to -0.7 +/- 0.5 mmHg during the first period of pregnancy. Immediately before parturition the capsular pressure returned to the control level. During lactation the pressure rose as high as + 0.5 +/- 0.9 mmHg. After lactation the pressure returned again to the control value. By determining the extracellular fluid and plasma volume, as well as protein concentration in plasma and capsular fluid, the hydrostatic and colloid osmotic forces operating in the extracellular space could be analysed. It has been concluded that the observed capsular pressure changes during pregnancy are not solely of volumetric or colloid osmotic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号