首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The field of ion channels has entered into a rapid phase of development in the last few years, partly due to the breakthroughs in determination of the crystal structures of membrane proteins and advances in computer simulations of biomolecules. These advances have finally enabled the long-dreamed goal of relating function of a channel to its underlying molecular structure. Here we present simplified accounts of the competing permeation theories and then discuss their application to the potassium, gramicidin A and calcium channels.  相似文献   

2.
Ion channels: recent progress and prospects   总被引:3,自引:0,他引:3  
Determination of the crystal structure of the KcsA potassium channel and its subsequent refinement at 2 A resolution have stimulated much interest in modelling of ion channels. Here we review the recent developments in ion channels research, focusing especially on the question of structure-function relationships, and discuss how permeation models based on Brownian and molecular dynamics simulations can be used fruitfully in this endeavour.  相似文献   

3.
We test the validity of the mean-field approximation in Poisson-Nernst-Planck theory by contrasting its predictions with those of Brownian dynamics simulations in schematic cylindrical channels and in a realistic potassium channel. Equivalence of the two theories in bulk situations is demonstrated in a control study. In simple cylindrical channels, considerable differences are found between the two theories with regard to the concentration profiles in the channel and its conductance properties. These differences are at a maximum in narrow channels with a radius smaller than the Debye length and diminish with increasing radius. Convergence occurs when the channel radius is over 2 Debye lengths. These tests unequivocally demonstrate that the mean-field approximation in the Poisson-Nernst-Planck theory breaks down in narrow ion channels that have radii smaller than the Debye length.  相似文献   

4.
Measurements of anion-cation permeability ratios (e.g., P Cl/P Na) are most readily made by measuring changes in zero-current reversal potential when the salt concentration on one side of the membrane (e.g., external NaCl) is decreased. This is particularly useful for measuring changes in ion selectivity in wild-type and mutant channels, such as those of the ligand-gated ion channel superfamily, and has shown that many of these channels have a significant permeability to counter-ions. One Brownian dynamics study of ion permeation through such narrow ion channels failed to observe such counter-ion movement, although later, another Brownian dynamics study did observe counter-ion movement through simulations of the same channels. The question has been raised as to the reliability of such reversal potential measurements for determining permeability ratios, particularly given the use of an equation such as the Goldman-Hodgkin-Katz (GHK) equation, which is often used to calculate such ratios. A new derivation of the GHK equation in terms of activity coefficients is also included. The application of irreversible thermodynamics will be shown to qualitatively support the reliability of such experimental anion-cation permeability values derived from reversal potential measurements. It will then be shown that for such zero-current situations, different electrodiffusion models, with very different underlying assumptions, produce almost identical relative permeabilities (and reversal potentials). Finally, the results of the two Brownian dynamics simulation studies and the relationship between reversal potentials and relative permeability will be discussed.  相似文献   

5.
Potassium channels play critical roles in many physiological processes, providing a selective permeation route for K+ ions in and out of a cell, by employing a carefully designed selectivity filter, evolutionarily conserved from viruses to mammals. The structure of the selectivity filter was determined at atomic resolution by x-ray crystallography, showing a tight coordination of desolvated K+ ions by the channel. However, the molecular mechanism of K+ ions permeation through potassium channels remains unclear, with structural, functional and computational studies often providing conflicting data and interpretations. In this review, we will present the proposed mechanisms, discuss their origins, and will critically assess them against all available data. General properties shared by all potassium channels are introduced first, followed by the introduction of two main mechanisms of ion permeation: soft and direct knock-on. Then, we will discuss critical computational and experimental studies that shaped the field. We will especially focus on molecular dynamics (MD) simulations, that provided mechanistic and energetic aspects of K+ permeation, but at the same time created long-standing controversies. Further challenges and possible solutions are presented as well.  相似文献   

6.
7.
The mechanisms underlying ion transport and selectivity in calcium channels are examined using electrostatic calculations and Brownian dynamics simulations. We model the channel as a rigid structure with fixed charges in the walls, representing glutamate residues thought to be responsible for ion selectivity. Potential energy profiles obtained from multi-ion electrostatic calculations provide insights into ion permeation and many other observed features of L-type calcium channels. These qualitative explanations are confirmed by the results of Brownian dynamics simulations, which closely reproduce several experimental observations. These include the current-voltage curves, current-concentration relationship, block of monovalent currents by divalent ions, the anomalous mole fraction effect between sodium and calcium ions, attenuation of calcium current by external sodium ions, and the effects of mutating glutamate residues in the amino acid sequence.  相似文献   

8.
Recent advances in ion channel research   总被引:3,自引:0,他引:3  
The field of ion channels has entered into a rapid phase of development in the last few years, partly due to the breakthroughs in determination of the crystal structures of membrane proteins and advances in computer simulations of biomolecules. These advances have finally enabled the long-dreamed goal of relating function of a channel to its underlying molecular structure. Here we present simplified accounts of the competing permeation theories and then discuss their application to the potassium, gramicidin A and calcium channels.  相似文献   

9.
A hierarchical computational strategy combining molecular modeling, electrostatics calculations, molecular dynamics, and Brownian dynamics simulations is developed and implemented to compute electrophysiologically measurable properties of the KcsA potassium channel. Models for a series of channels with different pore sizes are developed from the known x-ray structure, using insights into the gating conformational changes as suggested by a variety of published experiments. Information on the pH dependence of the channel gating is incorporated into the calculation of potential profiles for K(+) ions inside the channel, which are then combined with K(+) ion mobilities inside the channel, as computed by molecular dynamics simulations, to provide inputs into Brownian dynamics simulations for computing ion fluxes. The open model structure has a conductance of approximately 110 pS under symmetric 250 mM K(+) conditions, in reasonable agreement with experiments for the largest conducting substate. The dimensions of this channel are consistent with electrophysiologically determined size dependence of quaternary ammonium ion blocking from the intracellular end of this channel as well as with direct structural evidence that tetrabutylammonium ions can enter into the interior cavity of the channel. Realistic values of Ussing flux ratio exponents, distribution of ions within the channel, and shapes of the current-voltage and current-concentration curves are obtained. The Brownian dynamics calculations suggest passage of ions through the selectivity filter proceeds by a "knock-off" mechanism involving three ions, as has been previously inferred from functional and structural studies of barium ion blocking. These results suggest that the present calculations capture the essential nature of K(+) ion permeation in the KcsA channel and provide a proof-of-concept for the integrated microscopic/mesoscopic multitiered approach for predicting ion channel function from structure, which can be applied to other channel structures.  相似文献   

10.
Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K+ ions in various configurations. For both channels, we find that a pair of K+ ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K+ ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics.  相似文献   

11.
Potassium channels catalyze the selective transfer of potassium across the cell membrane and are essential for setting the resting potential in cells, controlling heart rate and modulating the firing pattern in neurons. Tetraethylammonium (TEA) blocks ion conduction through potassium channels in a voltage-dependent manner from both sides of the membrane. Here we show the structural basis of TEA blockade by cocrystallizing the prokaryotic potassium channel KcsA with two selective TEA analogs. TEA binding at both sites alters ion occupancy in the selectivity filter; these findings underlie the mutual destabilization and voltage-dependence of TEA blockade. We propose that TEA blocks potassium channels by acting as a potassium analog at the dehydration transition step during permeation.  相似文献   

12.
We have explored the permeation and blockage of ions in sodium channels, relating the channel structure to function using electrostatic profiles and Brownian dynamics simulations. The model used resembles the KcsA potassium channel with an added external vestibule and a shorter selectivity filter. The electrostatic energy landscape seen by permeating ions is determined by solving Poisson's equation. The two charged amino acid rings of Glu-Glu-Asp-Asp (EEDD) and Asp-Glu-Lys-Ala (DEKA) around the selectivity filter region are seen to play a crucial role in making the channel sodium selective, and strongly binding calcium ions such that they block the channel. Our model closely reproduces a range of experimental data including the current-voltage curves, current-concentration curves and blockage of monovalent ions by divalent ions.  相似文献   

13.
The mechanisms underlying transport of ions across the potassium channel are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We first build open-state configurations of the channel with molecular dynamics simulations, by pulling the transmembrane helices outward until the channel attains the desired interior radius. To gain insights into ion permeation, we construct potential energy profiles experienced by an ion traversing the channel in the presence of other resident ions. These profiles reveal that in the absence of an applied field the channel accommodates three potassium ions in a stable equilibrium, two in the selectivity filter and one in the central cavity. In the presence of a driving potential, this three-ion state becomes unstable, and ion permeation across the channel is observed. These qualitative explanations are confirmed by the results of three-dimensional Brownian dynamics simulations. We find that the channel conducts when the ionizable residues near the extracellular entrance are fully charged and those near the intracellular side are partially charged. The conductance increases steeply as the radius of the intracellular mouth of the channel is increased from 2 A to 5 A. Our simulation results reproduce several experimental observations, including the current-voltage curves, conductance-concentration relationships, and outward rectification of currents.  相似文献   

14.
The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The saturation of the central free energy barrier for the peptidic channels occurs at relatively short lengths, and it is correlated with the desolvation from the bulk water. Remarkably, decomposition of free energy barriers into enthalpic and entropic terms reveals an entropic cost for ion permeation. Furthermore, this entropic cost dominates the ion permeation free energy barrier, since the corresponding free energy contribution is higher than the enthalpic barrier. We conclude that the length dependence of the free energy is enthalpy-dominated, but the entropy is the major contribution to the permeation barrier. The decrease in rotational water motion and the reduction of channel mobility are putative origins for the overall entropic penalty.  相似文献   

15.
16.
We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations.  相似文献   

17.
Constructing accurate computational models that explain how ions permeate through a biological ion channel is an important problem in biophysics and drug design. Brownian dynamics simulations are large-scale interacting particle computer simulations for modeling ion channel permeation but can be computationally prohibitive. In this paper, we show the somewhat surprising result that a small-dimensional semi-Markov model can generate events (such as conduction events and dwell times at binding sites in the protein) that are statistically indistinguishable from brownian dynamics computer simulation. This approach enables the use of extrapolation techniques to predict channel conduction when performing the actual brownian dynamics simulation that is computationally intractable. Numerical studies on the simulation of gramicidin A ion channels are presented.  相似文献   

18.
Animal venoms contain various toxins which act on ion-channels, responsible for either sodium, potassium, calcium or chloride permeation. Structure determination of these toxins demonstrate that they are organised around two different structural motifs: potassium and sodium channel effectors are organised around an alpha-helix connected by two disulfide bridges to a two- or three-stranded beta sheet whereas calcium channels effectors are structured around an "Inhibitory Cystine Knot" motif made of a dense disulfide-rich core from which emerge several loops. Analysis of local structural modifications allows us to understand the structural basis of the selectivity of these effectors towards the various ion channels. This is the first step in the design of new synthetic molecules which are potent therapeutic drugs for diseases involving ion channel dysfunctioning.  相似文献   

19.
A computational algorithm based on Grand Canonical Monte Carlo (GCMC) and Brownian Dynamics (BD) is described to simulate the movement of ions in membrane channels. The proposed algorithm, GCMC/BD, allows the simulation of ion channels with a realistic implementation of boundary conditions of concentration and transmembrane potential. The method is consistent with a statistical mechanical formulation of the equilibrium properties of ion channels (; Biophys. J. 77:139-153). The GCMC/BD algorithm is illustrated with simulations of simple test systems and of the OmpF porin of Escherichia coli. The approach provides a framework for simulating ion permeation in the context of detailed microscopic models.  相似文献   

20.
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein whose transmembrane domain (TM-domain) is believed to be responsible for channel gating via a hydrophobic effect. In this work, we perform molecular dynamics and Brownian dynamics simulations to investigate the effect of transmembrane potential on the conformation and water occupancy of TM-domain, and the resulting ion permeation events. The results show that the behavior of the hydrophobic gate is voltage-dependent. Large hyperpolarized membrane potential can change the conformation of TM-domain and water occupancy in this region, which may enable ion conduction. An electrostatic gating mechanism is also proposed from our simulations, which seems to play a role in addition to the well-known hydrophobic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号