首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Interphasic chromatin condenses into the chromosomes in order to facilitate the correct segregation of genetic information. It has been previously reported that the phosphorylation and methylation of the N-terminal tail of histone H3 are responsible for chromosome condensation. In this study, we demonstrate that the deacetylation and methylation of histone H3 lysine 9 (H3K9) are required for proper chromosome condensation. We confirmed that H3K9ac levels were reduced, whereas H3K9me3 levels were increased in mitotic cells, via immunofluorescence and Western blot analysis. Nocodazole treatment induced G2/M arrest but co-treatment with TSA, an HDAC inhibitor, delayed cell cycle progression. However, the HMTase inhibitor, AdoX, had no effect on nocodazole-induced G2/M arrest, thereby indicating that sequential modifications of H3K9 are required for proper chromosome condensation. The expression of SUV39H1 and SETDB1, H3K9me3-responsible HMTases, are specifically increased along with H3K9me3 in nocodazole-arrested buoyant cells, which suggests that the increased expression of those proteins is an important step in chromosome condensation. H3K9me3 was highly concentrated in the vertical chromosomal axis during prophase and prometaphase. Collectively, the results of this study indicate that sequential modifications at H3K9 are associated with correct chromosome condensation, and that H3K9me3 may be relevant to the condensation of chromosome length.  相似文献   

3.
The epigenetic state of donor cells plays a vital role in the nuclear reprogramming and chromatin remodeling of cloned embryos. In this study we investigated the effect of DNA methylation state of donor cells on the development of mouse embryos reconstructed with embryonic stem (ES) cell nuclei. Our results confirmed that deletion of the DNA methyltransferase 3a (Dnmt3a) and DNA methyltransferase 3b (Dnmt3b) distinctly decreases the level of DNA methylation in ES cells. In contrast to wild type ES cells (J1), Dnmt3a − / − 3b − / − (DKO) and Dnmt3b − / − (3bKO) donor cells significantly elevated the percentage of embryonic stem cell nuclear transfer (ECNT) morula, blastocysts and postimplantation embryos (P < 0.05). However, the efficiency of establishment of NT-ES cell lines derived from DKO reconstructed blastocysts was not improved, and the expression pattern of OCT4 and CDX2 in cloned blastocysts and postimplantation embryos was not altered either. Our results suggest that the DNA methylation state of the donor nucleus is an important factor in regulation of the donor nuclear reprogramming.  相似文献   

4.
5.
6.
7.
8.
We used electron microscopy to examine the structure of human DNA pol gamma, the heterotrimeric mtDNA replicase implicated in certain mitochondrial diseases and aging models. Separate analysis of negatively stained preparations of the catalytic subunit, pol gammaA, and of the holoenzyme including a dimeric accessory factor, pol gammaB(2), permitted unambiguous identification of the position of the accessory factor within the holoenzyme. The model explains protection of a partial chymotryptic cleavage site after residue L(549) of pol gammaA upon binding of the accessory subunit. This interaction region is near residue 467 of pol gammaA, where a disease-related mutation has been reported to impair binding of the B subunit. One pol gammaB subunit dominates contacts with the catalytic subunit, while the second B subunit is largely exposed to solvent. A model for pol gamma is discussed that considers the effects of known mutations in the accessory subunit and the interaction of the enzyme with DNA.  相似文献   

9.
10.
11.
The heterotrimeric GTP binding proteins, G proteins, consist of three distinct subunits: alpha, beta, and gamma. There are 12 known mammalian gamma subunit genes whose products are the smallest and most variable of the G protein subunits. Sequencing of the bovine brain gamma(10) protein by electrospray mass spectrometry revealed that it differs from the human protein by an Ala to Val substitution near the N-terminus. Comparison of gamma isoform subunit sequences indicated that they vary substantially more at the N-terminus than at other parts of the protein. Thus, species variation of this region might reflect the lack of conservation of a functionally unimportant part of the protein. Analysis of 38 gamma subunit sequences from four different species shows that the N-terminus of a given gamma subunit isoform is as conserved between different species as any other part of the protein, including highly conserved regions. These data suggest that the N-terminus of gamma is a functionally important part of the protein exhibiting substantial isoform-specific variation.  相似文献   

12.
Modification of proteins by protein methyltransferases has several important biological functions. Here, we study the methylation of histone H3 tail at position Lys9 by the Dim-5 histone lysine methyltransferase, which is involved in epigenetic signaling and gene silencing and which triggers DNA methylation in Neurospora crassa. We have developed a new assay to detect protein methylation using a biotinylated synthetic peptide substrate and a radioactively labeled coenzyme. We show that the assay is linear with respect to time and enzyme concentration (under multiple turnover conditions) and that its background is very low. Data points were reproducible within 3%. At least 200 pmol of biotinylated peptide is bound completely to the microplate. We employed the assay system to determine the K(m) and k(cat) values of the Dim-5 enzyme for the methylation of a 20 mer peptide to be 7.4 microM and 2.3 min(-1), respectively. In addition, we determined the activity of four Dim-5 variants, ranging from full activity to less than 1% of residual activity. The microplate biotin/avidin peptide methylation assay developed here is convenient, very accurate, reproducible, and inexpensive. Because it yields quantitative results, it can be employed for a characterization of the enzymatic properties of histone lysine methyltransferases and other protein methyltransferases. The assay also is well suited for high-throughput applications.  相似文献   

13.
《Epigenetics》2013,8(11):1238-1248
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

14.
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

15.
The integrin alpha9beta1 has been shown to be widely expressed on smooth muscle and epithelial cells, and to mediate adhesion to the extracellular matrix proteins osteopontin and tenascin-C. We have found that the peptide sequence this integrin recognizes in tenascin-C is highly homologous to the sequence recognized by the closely related integrin alpha4beta1, in the inducible endothelial ligand, vascular cell adhesion mole-cule-1 (VCAM-1). We therefore sought to determine whether alpha9beta1 also recognizes VCAM-1, and whether any such interaction would be biologically significant. In this report, we demonstrate that alpha9beta1 mediates stable cell adhesion to recombinant VCAM-1 and to VCAM-1 induced on human umbilical vein endothelial cells by tumor necrosis factor-alpha. Furthermore, we show that alpha9beta1 is highly and selectively expressed on neutrophils and is critical for neutrophil migration on VCAM-1 and tenascin-C. Finally, alpha9beta1 and alpha4 integrins contribute to neutrophil chemotaxis across activated endothelial monolayers. These observations suggest a possible role for alpha9beta1/VCAM-1 interactions in extravasation of neutrophils at sites of acute inflammation.  相似文献   

16.
Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment is a characteristic of pericentric heterochromatin. The hypothesis of a stepwise mechanism to establish and maintain this mark during DNA replication suggests that newly synthesized histone H3 goes through an intermediate methylation state to become a substrate for the histone methyltransferase Suppressor of variegation 39 (Suv39H1/H2). How this intermediate methylation state is achieved and how it is targeted to the correct place at the right time is not yet known. Here, we show that the histone H3K9 methyltransferase SetDB1 associates with the specific heterochromatin protein 1α (HP1α)–chromatin assembly factor 1 (CAF1) chaperone complex. This complex monomethylates K9 on non‐nucleosomal histone H3. Therefore, the heterochromatic HP1α–CAF1–SetDB1 complex probably provides H3K9me1 for subsequent trimethylation by Suv39H1/H2 in pericentric regions. The connection of CAF1 with DNA replication, HP1α with heterochromatin formation and SetDB1 for H3K9me1 suggests a highly coordinated mechanism to ensure the propagation of H3K9me3 in pericentric heterochromatin during DNA replication.  相似文献   

17.
Li BZ  Huang Z  Cui QY  Song XH  Du L  Jeltsch A  Chen P  Li G  Li E  Xu GL 《Cell research》2011,21(8):1172-1181
Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.  相似文献   

18.
《Molecular cell》2023,83(16):2872-2883.e7
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   

19.
Histone lysine methylation has been shown to index silenced chromatin regions at, for example, pericentric heterochromatin or of the inactive X chromosome. Here, we examined the distribution of repressive histone lysine methylation states over the entire family of DNA repeats in the mouse genome. Using chromatin immunoprecipitation in a cluster analysis representing repetitive elements, our data demonstrate the selective enrichment of distinct H3-K9, H3-K27 and H4-K20 methylation marks across tandem repeats (e.g. major and minor satellites), DNA transposons, retrotransposons, long interspersed nucleotide elements and short interspersed nucleotide elements. Tandem repeats, but not the other repetitive elements, give rise to double-stranded (ds) RNAs that are further elevated in embryonic stem (ES) cells lacking the H3-K9-specific Suv39h histone methyltransferases. Importantly, although H3-K9 tri- and H4-K20 trimethylation appear stable at the satellite repeats, many of the other repeat-associated repressive marks vary in chromatin of differentiated ES cells or of embryonic trophoblasts and fibroblasts. Our data define a profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes and suggest tandem repeats and dsRNA as primary triggers for more stable chromatin imprints.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号