首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

2.
Abstract The extent of contamination of a freshwater lake with Vibrio cholerae 0139 Bengal and the toxigenicity of all the V. cholerae isolates recovered during the period of the study were examined during and after an explosive outbreak of 0139 cholera in Calcutta. Strains biochemically characterized as V. cholerae could be isolated throughout the period of study examined from the freshwater lake samples. Most probable number of V. cholerae belonging to the 0139 serogroup in surface waters was 3 to 4 per 100 ml during major part of the study but isolation of this serogroup from sediment and plankton samples was infrequent. Of the total of 150 strains recovered, 23 (15.3%) agglutinated with the 0139 antiserum while the remaining belonged to the non-O1 non-O139 serogroups. None of the strains agglutinated with the O1 antiserum. All the 23 strains of V. cholerae O139 produced cholera toxin while 7.9% of the 127 non-O1 non-O139 strains also produced cholera toxin. Resistance to ampilicillin, furazolidone and streptomycin was encountered among strains belonging to both V. cholerae O139 and V. cholerae non-O1 non-O139 strains, but the percentage of resistant strains in the former was much higher than in the latter. During this cholera epidemic, possibly due to the introduction of large numbers of toxigenic V. cholerae such as the O139 serogroup, there was an increase in the number of toxigenic vibrios among the innocuous aquatic residents. This presumably occured through genetic exchange and, if substantiated, could play an important role in the re-emergence of epidemics.  相似文献   

3.
The results of the serotyping of 244 V. cholerae non O1/O139 cultures isolated from patients in Uzbekistan in 2000 and 2001 are presented. All isolates were studied by the method of molecular probing and in the polymerase chain reaction for the presence of virulence genes and for sensitivity to phages ctx+, ctx- and hemolytic activity. The use of monoreceptor O-sera O2-O83 made it possible to determine vibrios of 32 serogroups with the dominating role in the etiology of acute enteric diseases belonging to serogroups O18, O62, O82, O37. Genes ctx AB were detected in none of the isolates, 5 of them contained gene tcp A. A group of cultures, sensitive to phage ctx+ and belonging mainly to enteropathogenic serogroups, was detected.  相似文献   

4.
Study of molecular-epidemiological characteristics of Vibrio cholerae non O1/non O139 serogroup with complete and limited set of virulence genes was performed. Differences of their genes composition as compared to these of O1 serogroup (classic and El Tor biovars) were revealed, which points to their origin from avirulent environmental cholera vibrios.  相似文献   

5.
The epitope composition of O-polysaccharides in the lipopolysaccharide (LPS) of V. cholerae, serogroup O139, isolated from clinical material and water of surface reservoirs was analyzed with the use of monoclonal antibodies. The analysis demonstrated that these O-polysaccharides were similar in their structure and chemical composition. In LPS of V. cholerae O139 clinical strains O-polysaccharide determinants occurred more often. Among V. cholerae isolated from water strains on whose surface individual epitopes of O-polysaccharide occurred less frequently or were absent appeared to be more numerous. A decrease in the concentration of microbial cells in the process of their testing by immunological methods led to increased percent of negative reactions with specific antibodies. Some V. cholerae O139 strains isolated from water were similar in the epitope composition of their O-polysaccharide and binding activity to cultures isolated from humans. As indicated by the results of these studies, cholera vibrios Bengal and vibrios isolated from river water on the territory of Russia had quantitative differences due to a higher level of the production of O-polysaccharide determinants and their occurrence in V. cholerae of serogroup O139.  相似文献   

6.
Pang B  Yan M  Cui Z  Ye X  Diao B  Ren Y  Gao S  Zhang L  Kan B 《Journal of bacteriology》2007,189(13):4837-4849
Toxigenic serogroups O1 and O139 of Vibrio cholerae may cause cholera epidemics or pandemics. Nontoxigenic strains within these serogroups also exist in the environment, and also some may cause sporadic cases of disease. Herein, we investigate the genomic diversity among toxigenic and nontoxigenic O1 and O139 strains by comparative genomic microarray hybridization with the genome of El Tor strain N16961 as a base. Conservation of the toxigenic O1 El Tor and O139 strains is found as previously reported, whereas accumulation of genome changes was documented in toxigenic El Tor strains isolated within the 40 years of the seventh pandemic. High phylogenetic diversity in nontoxigenic O1 and O139 strains is observed, and most of the genes absent from nontoxigenic strains are clustered together in the N16961 genome. By comparing these toxigenic and nontoxigenic strains, we observed that the small chromosome of V. cholerae is quite conservative and stable, outside of the superintegron region. In contrast to the general stability of the genome, the superintegron demonstrates pronounced divergence among toxigenic and nontoxigenic strains. Additionally, sequence variation in virulence-related genes is found in nontoxigenic El Tor strains, and we speculate that these intermediate strains may have pathogenic potential should they acquire CTX prophage alleles and other gene clusters. This genome-wide comparison of toxigenic and nontoxigenic V. cholerae strains may promote understanding of clonal differentiation of V. cholerae and contribute to an understanding of the origins and clonal selection of epidemic strains.  相似文献   

7.
A comparative analysis of the genome of V. cholerae O139 strains isolated in Russia's territory from patients with cholera and from the environment showed essential differences in their structures. The genome of clinical strains possessed all tested genes associated with virulence (ctxAB, zot, ace, rstC, rtxA, hap, toxR and toxT) and the at-tRS site for the CTXp phage DNA integration. As for the O139 V. cholerae chromosome strains isolated from water, 70% of the studied genes (ctxAB, zot, ace, rstC, tcpA, and toxT) and the attRS sequence were not detected in them. A lack of the key virulence genes in O139-serogroup "water" vibrios, including genes of toxin-coregulated adhesion pili. (that are receptors for the CTXp phage), and of the attachment site of the above phage are indicative of that the O139 V. cholerae strains isolated from open water sources located in different Russia's regions are epidemically negligible.  相似文献   

8.
The review presents data on circulation of antibiotic resistant and susceptible strains of Vibrio cholerae serogroups O1 and O139 isolated from cholera patients and healthy persons as well as from the environment, in Asia, Africa, Australia, and Europe (including New Independent States) during 7th cholera pandemic.  相似文献   

9.
Vibrio cholerae is a free-living bacterium found in water and in association with plankton. V. cholerae non-O1/non-O139 strains are frequently isolated from aquatic ecosystems worldwide. Less frequently isolated are V. cholerae O1 and V. cholerae O139, the aetiological agents of cholera. These strains have two main virulence-associated factors, cholera toxin (CT) and toxin co-regulated pilus (TCP). By extracting total DNA from aquatic samples, the presence of pathogenic strains can be determined quickly and used to improve a microbiological risk assessment for cholera in coastal areas. Some methods suggested for DNA extraction from water samples are not applicable to all water types. We describe here a method for DNA extraction from coastal water and a multiplex polymerase chain reaction (PCR) for O1 and O139 serogroups. DNA extraction was successfully accomplished from 117 sea water samples collected from coastal areas of Perú, Brazil and the USA. DNA concentration in all samples varied from 20 ng to 480 micro g micro l-1. The sensitivity of the DNA extraction method was 100 V. cholerae cells in 250 ml of water. The specificity of multiplex O1/O139 PCR was investigated by analysing 120 strains of V. cholerae, Vibrio and other Bacteria species. All V. cholerae O1 and O139 tested were positive. For cholera surveillance of aquatic environments and ballast water, total DNA extraction, followed by V. cholerae PCR, and O1/O139 serogroup and tcpA/ctxA genes by multiplex PCR offers an efficient system, permitting risk analysis for cholera in coastal areas.  相似文献   

10.
Vibrio cholerae is the causative organism of the disease cholera. The lipopolysaccharide (LPS) of V. cholerae plays an important role in eliciting the antibacterial immune response of the host and in classifying the vibrios into some 200 or more serogroups. This review presents an account of our up-to-date knowledge of the physical and chemical characteristics of the three constituents, lipid-A, core-polysaccharide (core-PS) and O-antigen polysaccharide (O-PS), of the LPS of V. cholerae of different serogroups including the disease-causing ones, O1 and O139. The structure and occurrence of the capsular polysaccharide (CPS) on V. cholerae O139 have been discussed as a relevant topic. Similarity and dissimilarity between the structures of LPS of different serogroups, and particularly between O22 and O139, have been analysed with a view to learning their role in the causation of the epidemic form of the disease by avoiding the host defence mechanism and in the evolution of the newer pathogenic strains in future. An idea of the emerging trends of research involving the use of immunogens prepared from synthetic oligosaccharides that mimic terminal epitopes of the O-PS of V. cholerae O1 in the development of a conjugate anti cholera vaccine is also discussed.  相似文献   

11.
多重PCR方法检测霍乱弧菌的研究   总被引:1,自引:0,他引:1  
霍乱弧菌是霍乱的病原体,可以分为O1群、O139群和非O1/非O139群。O1群和O139群霍乱弧菌产生的霍乱肠毒素(也称霍乱毒素)是产生霍乱的主要原因,也只有O1群和O139群霍乱弧菌可引起霍乱。其他群的霍乱弧菌毒性不高,但在食品中也不允许被检出。实验以霍乱胶原酶基因和霍乱毒素基因为目的基因,试图建立一种PCR方法对霍乱弧菌进行检测研究,结果表明此方法可以用于食品中的霍乱弧菌检测。  相似文献   

12.
The worldwide epidemiological situation in cholera El Tor at the beginning of this century is presented; among its characteristic features are continued extensive epidemics and outbreaks in African and Asian countries with cases of import of this infection to other continents. Outbreaks caused by a new variant of the infective agent of cholera, Vibrio cholerae O139, are still registered at limited territories in the countries of South-East Asia. In some CIS countries (Azerbaijan, Kazakhstan and Russia) unstable situation in cholera is still preserved due to cases of infection import mainly from Asian countries, as well as to the isolation of epidemically insignificant haemolysin-positive and haemolysin-negative V. cholerae O1 and O139, containing no ctx and tcpA genes, from surface water reservoirs and other environmental objects. In Russia prognosis for cholera is still unfavorable.  相似文献   

13.
The pathomorphological picture of experimental infection caused by the infective agent of cholera was shown to have some specific features observed in infections caused by vibrios belonging to the serogroups under study. Infection caused by V. cholerae of serogroup O139 induced some morphological changes in the gastrointestinal tract which were quite characteristic of this disease, but inflammatory changes with the prevalence of proliferative infiltrative processes came to the foreground simultaneously with less developed processes of edema and dystrophic lesions of enterocytes. These specific morphological features in animals infected with V. cholerae of serogroup O139 appeared to be probably due to the production of new surface structures by these strains.  相似文献   

14.
15.
AIM: Complex assessment of virulence of cholera vibrios carrying the truncated CTX element (pre-CTXphi prophage). MATERIALS AND METHODS: Twenty-two strainsof Vibriocholerae O1 and non-O1/non-O139 were studied by PCR and laboratory models. RESULTS: Genomes of all strains, besides pre-CTXphi genes, contained genes hapA (hemagglutinin/proteases), cef (CHO cell elongating factor), rtxA (high-molecular cytotoxin), and rtxC (its activator). Nucleotide sequences of rtxA and vgrG genes from ACD domains, genes VPI and VPI-2 from islands of pathogenicity, mshA (mannose-sensitive pili) gene were presented in different combinations. None strains contained shiga-like toxin (slt1) aswell as thermostable direct (tdh) and thermostable direct-related (trh) hemolysin genes of V. parahaemoliticus. On the model of infant rabbits almost all strains caused a significant enteropathogenic effect sometimes resembling cholera effect and in a number of cases dissemination of bacteria into various organs and tissues took place. Cultural supernatants of the majority of strains stipulated cell rounding in CHO cultures (one of them caused cell destruction) and disconnection of cells in McCoy and L-929 dense monolayers as well as increase of skin permeability in Craig's test. Conclusion. Apparently, diarrhea of different severity observed in patients from whom these strains were isolated as well as signs of virulence revealed in the laboratory models were determined by the expression of genes of accessory pathogenicity factors including those detected in the present study.  相似文献   

16.
Two major virulence factors are associated with epidemic strains (O1 and O139 serogroups) of Vibrio cholerae: cholera toxin encoded by the ctxAB genes and toxin-coregulated pilus encoded by the tcpA gene. The ctx genes reside in the genome of a filamentous phage (CTXphi), and the tcpA gene resides in a vibrio pathogenicity island (VPI) which has also been proposed to be a filamentous phage designated VPIphi. In order to determine the prevalence of horizontal transfer of VPI and CTXphi among nonepidemic (non-O1 and non-O139 serogroups) V. cholerae, 300 strains of both clinical and environmental origin were screened for the presence of tcpA and ctxAB. In this paper, we present the comparative genetic analyses of 11 nonepidemic serogroup strains which carry the VPI cluster. Seven of the 11 VPI(+) strains have also acquired the CTXphi. Multilocus sequence typing and restriction fragment length polymorphism analyses of the VPI and CTXphi prophage regions revealed that the non-O1 and non-O139 strains were genetically diverse and clustered in lineages distinct from that of the epidemic strains. The left end of the VPI in the non-O1 and non-O139 strains exhibited extensive DNA rearrangements. In addition, several CTXphi prophage types characterized by novel repressor (rstR) and ctxAB genes and VPIs with novel tcpA genes were found in these strains. These data suggest that the potentially pathogenic, nonepidemic, non-O1 and non-O139 strains identified in our study most likely evolved by sequential horizontal acquisition of the VPI and CTXphi independently rather than by exchange of O-antigen biosynthesis regions in an existing epidemic strain.  相似文献   

17.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

18.
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3–5 million infections worldwide and 28.800–130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.  相似文献   

19.
Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.  相似文献   

20.
To find out stable and effective producers of major protective antigens intended for use as components of cholera chemical vaccine against V. cholerae strains of serogroups O and O139, the comparative analysis of the production of cholera toxin, toxin-coregulated pili (TCP), antigens O1 and O139, polysaccharide capsule and outer membrane protein OmpU in different V. cholerae strains groups O1 and O139 has been made. V. cholerae strain KM68, serogroup O1, has been found capable of the production of antigen O1, serovar Ogawa, protein OmpU at a sufficiently high level and the hyperproduction of cholera toxin and TCP, and thus suitable for use in the manufacture of cholera bivalent vaccine as the source of these antigens. Specially selected alysogenic noncapsular strain KM137 of serogroup O139, characterized by a high and stable level of the biosynthesis of this somatic antigen when grown in both laboratory and production conditions, may serve as the produces of antigen O139.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号