首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

2.
Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and >250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AchE possess hydrophobic domain(s) different from the 20 kD peptide already described.Abbreviations used AChE acetylcholinesterase - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMA tetramethylammonium chloride  相似文献   

3.
《The Journal of cell biology》1987,105(6):2471-2478
Extracts of the electric organ of Torpedo californica contain a proteinaceous factor that causes the formation of patches on cultured myotubes at which acetylcholine receptors (AChR), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) are concentrated. Results of previous experiments indicate that this factor is similar to the molecules in the synaptic basal lamina that direct the aggregation of AChR and AChE at regenerating neuromuscular junctions in vivo. We have purified the active components in the extracts 9,000-fold. mAbs against four different epitopes on the AChR/AChE/BuChE-aggregating molecules each immunoprecipitated four polypeptides from electric organ extracts, with molecular masses of 150, 135, 95, and 70 kD. Gel filtration chromatography of electric organ extracts revealed two peaks of AChR/AChE/BuChE-aggregation activity; one comigrated with the 150-kD polypeptide, the other with the 95-kD polypeptide. The 135- and 70-kD polypeptides did not cause AChR/AChE/BuChE aggregation. Based on these molecular characteristics and on the pattern of staining seen in sections of muscle labeled with the mAbs, we conclude that the electric organ-aggregating factor is distinct from previously identified molecules, and we have named it "agrin."  相似文献   

4.
Phosphatidylinositol-specific phospholipase C (PIPLC) quantitatively solubilizes acetylcholinesterase (AChE) from purified synaptic plasma membranes and intact synaptosomes of Torpedo ocellata electric organ. The solubilized AChE migrates as a single peak of sedimentation coefficient 7.0S upon sucrose gradient centrifugation, corresponding to a subunit dimer. The catalytic subunit polypeptide of AChE is the only polypeptide detectably solubilized by PIPLC. This selective removal of AChE does not affect the amount of acetylcholine released from intact synaptosomes upon K+ depolarization. PIPLC also quantitatively solubilizes AChE from the surface of intact bovine and rat erythrocytes, but only partially solubilizes AChE from human and mouse erythrocytes. The AChE released from rat and human erythrocytes by PIPLC migrates as a approximately 7S species on sucrose gradients, corresponding to a catalytic subunit dimer. PIPLC does not solubilize particulate AChE from any of the brain regions examined of four mammalian species. Several other phospholipases tested, including a nonspecific phospholipase C from Clostridium welchii, fail to solubilize AChE from Torpedo synaptic plasma membranes, rat erythrocytes, or rat striatum.  相似文献   

5.
Acetylcholinesterase (AChE; EC 3.1.1.7) extracted in 1% Triton X-100 from rabbit brain was purified 2,000-fold by chromatography on agarose conjugated with a monoclonal antibody directed against human red blood cell cholinesterase. After elution from the immunoadsorbent with pH 11 buffer, the preparation was purified further by affinity chromatography on phenyltrimethylammonium-Sepharose 4B with decamethonium elution. Overall yield of purified enzyme was 37% of the AChE originally solubilized, with a specific activity of 2,950 units/mg protein. Electrophoresis under reducing conditions in 7.5% sodium dodecyl sulfate polyacrylamide gels revealed only one silver-staining polypeptide band. A streamlined purification procedure enabled the isolation of electrophoretically homogeneous AChE to be completed in fewer than 7 days, at yields exceeding 50%. Electrophoretic analysis of purified AChE indicated an apparent MW of 71,000 for the monomeric subunit. Gel filtration and sucrose density gradient centrifugation in the presence of Triton X-100 showed little difference between the properties of the native and the purified enzyme. The molecular mass of the main species was estimated from the gel filtration and sedimentation data to be 280,000 daltons. Kinetic parameters of the purified protein (Km = 0.16 +/- 0.01 mM) were close to those of the native enzyme (Km = 0.12 +/- 0.01 mM) when examined with acetylthiocholine iodide as substrate. The two-step immunopurification procedure presented in this communication offers a convenient route to homogeneous neural AChE in quantities useful for detailed biochemical and immunochemical study.  相似文献   

6.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

7.
Globular forms (G forms) of acetylcholinesterase (AChE) are formed by monomers, dimers and tetramers of the catalytic subunits (G1, G2 and G4). In this work the hydrophobic G2 and G4 AChE forms were purified to homogeneity from Discopyge electric organ and bovine caudate nucleus and studied from different points of view, including: velocity sedimentation, affinity to lectins and SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions. The polypeptide composition of Discopyge electric organ G2 is similar to Torpedo, however the pattern of the brain G4 AChE is much complex. Under non-reducing conditions the catalytic subunit possesses a molecular weight of 65 kDa, however this value increases to 68 kDa after reduction, suggesting that intrachain-disulfide bonds are important in the folding of the catalytic subunits of the AChE. Also it was found that after mild proteolysis; the (125I)-TID-20 kDa fragment decreased its molecular weight to approximately 10 kDa with little loss of AChE activity. Finally, we suggest a model for the organization of the different domains of the hydrophobic anchor fragment of the G4 form.  相似文献   

8.
Structure of heparin-derived tetrasaccharides.   总被引:3,自引:2,他引:1       下载免费PDF全文
Quantitative solubilization of the phospholipid-associated form of acetylcholinesterase (AChE) from Torpedo electric organ can be achieved in the absence of detergent by treatment with phosphatidylinositol-specific phospholipase C (PIPLC) from Staphylococcus aureus [Futerman, Low & Silman (1983) Neurosci. Lett. 40, 85-89]. The sedimentation coefficient on sucrose gradients of AChE solubilized in detergents (DSAChE) varies with the detergent employed. However, the coefficient of AChE directly solubilized by PIPLC is not changed by detergents. Furthermore, PIPLC can abolish the detergent-sensitivity of the sedimentation coefficient of DSAChE purified by affinity chromatography, suggesting that one or more molecules of phosphatidylinositol (PI) are co-solubilized with DSAChE and remain attached throughout purification. DSAChE binds to phospholipid liposomes, whereas PIPLC-solubilized AChE and DSAChE treated with PIPLC do not bind even to liposomes containing PI. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis shows that PIPLC-solubilized AChE, like unmodified DSAChE, is a catalytic subunit dimer; electrophoresis in the presence of reducing agent reveals no detectable difference in the Mr of the catalytic subunit of unmodified DSAChE, of AChE solubilized by PIPLC and of AChE solubilized by Proteinase K. The results presented suggest that DSAChE is anchored to the plasma membrane by one or more PI molecules which are tightly attached to a short amino acid sequence at one end of the catalytic subunit polypeptide.  相似文献   

9.
Collagen Q (ColQ) is a key multidomain functional protein of the neuromuscular junction (NMJ), crucial for anchoring acetylcholinesterase (AChE) to the basal lamina (BL) and accumulating AChE at the NMJ. The attachment of AChE to the BL is primarily accomplished by the binding of the ColQ collagen domain to the heparan sulfate proteoglycan perlecan and the COOH-terminus to the muscle-specific receptor tyrosine kinase (MuSK), which in turn plays a fundamental role in the development and maintenance of the NMJ. Yet, the precise mechanism by which ColQ anchors AChE at the NMJ remains unknown. We identified five novel mutations at the COOH-terminus of ColQ in seven patients from five families affected with endplate (EP) AChE deficiency. We found that the mutations do not affect the assembly of ColQ with AChE to form asymmetric forms of AChE or impair the interaction of ColQ with perlecan. By contrast, all mutations impair in varied degree the interaction of ColQ with MuSK as well as basement membrane extract (BME) that have no detectable MuSK. Our data confirm that the interaction of ColQ to perlecan and MuSK is crucial for anchoring AChE to the NMJ. In addition, the identified COOH-terminal mutants not only reduce the interaction of ColQ with MuSK, but also diminish the interaction of ColQ with BME. These findings suggest that the impaired attachment of COOH-terminal mutants causing EP AChE deficiency is in part independent of MuSK, and that the COOH-terminus of ColQ may interact with other proteins at the BL.  相似文献   

10.
The Mr 10,000 phosphoprotein was purified from photosystem II particles by solubilization of the particles in 5% (w/v) dodecyl dimethylamine oxide, centrifugation in 10% (w/v) sucrose, and three chromatography steps. The purified phosphoprotein showed a unique NH2 terminus indicating a highly purified polypeptide. The amino acid sequence for the first nine residues is NH2-Ala-Thr-Gln-Thr-Val-Glu-Ser-Ser-Ser . . . COOH. The amino acid composition was determined and could also be used to help distinguish the polypeptide from other known thylakoid proteins. The sequence and composition data indicated that the Mr 10,000 phosphoprotein is neither the hydrophobic 8-kDa subunit of the energy coupling complex nor cytochrome b-559, but rather a unique, as yet unidentified, polypeptide associated with photosystem II.  相似文献   

11.
A simple and effective method was set up to purify acetylcholinesterase (AChE, EC3.1.1.7) from the cotton aphid, Aphis gossypii Glover. The procedure involved filtration on a sephadex G-25 column, separation with sephadex G-200 and procainamide affinity column. AChE from both susceptible and resistant strains were purified to a single band as resolved on denaturing polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity increased by 35,100- and 33,680-fold with a yield of 30.3 and 29.8%, respectively. The molecular mass of the purified AChE was about 63,500 Dalton as determined by SDS-PAGE. However, three bands resolved on PAGE gel electrophoresis, leading to the inference that native AChE exists in three forms. The optimum conditions for measuring the activity of purified AChE with kinetic method were 0.02M phosphate buffer, pH7.2, 0.02 mM 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), and 25 degrees C. Investigation also revealed that crude extract and purified AChE had different kinetic characteristics and inhibitory properties. They responded differently to varied DTNB, ATChI, and phosphate buffer ion concentrations, as well as pH, temperature, and inhibitors. The purified AChE was more sensitive to eserine, methamidophos, and pirimicarb. Especially for resistant aphids, the sensitivity of purified AChE to methamidophos and pirimicarb was enhanced 6.43 and 11.73 times, respectively. We infer that one or more factors in the crude extract from the resistance strain have more influence on AChE sensitivity. Further study is needed to investigate the basis of these observations.  相似文献   

12.
Acetylcholinesterase (AChE) from housefly heads was purified by affinity chromatography. Three different native forms were separated by electrophoresis on polyacrylamide gradient gels. Two hydrophilic forms presented apparent molecular weights of 75,000 (AChE1) and 150,000 (AChE2). A third component (AChE3) had a migration that depended on the nature and concentration of detergents. In the presence of sodium deoxycholate in the gel, AChE3 showed an apparent molecular weight very close to that of AChE2. Among the three forms, AChE3 was the only one found in purified membranes. The relationships among the various forms were investigated using reduction with 2-mercaptoethanol or proteolytic treatments. Such digestion converted purified AChE3 into AChE2 and AChE1, and reduction of AChE3 and AChE2 by 2-mercaptoethanol gave AChE1, in both cases with a significant loss of activity. These data indicate that the three forms of purified AChE may be classified as an active hydrophilic monomeric unit (G1) plus hydrophilic and amphiphilic dimers. These two components were termed G2s and G2m, where "s" refers to soluble and "m" to membrane bound.  相似文献   

13.
A polypeptide (polypeptide P39), which is presumed to involved in the photosynthetic circadian rhythm in the green alga Acetabularia, was purified from the EDTA-insoluble chloroplast membrane fraction by means of preparative dodecylsulfate gel electrophoresis and then partially characterized. The purity of the isolated polypeptide P39 was confirmed by a further electrophoresis on an analytical dodecylsulfate gel and further elucidated by amino-terminal analysis which shows that glycine is the only amino-terminal amino acid of the purified polypeptide material. The molecular weight of the polypeptide P39 was found to be about 39,000 on analytical gel electrophoresis and the value was further supported by those obtained from amino acid composition and peptide mapping. The amino acid composition of polypeptide P39 showed that the proportion of intermediate amino acid groups is high while the proportion of hydrophilic amino acid groups is well balanced by that of hydrophobic amino acid groups, a property characteristic of membrane proteins.  相似文献   

14.
The 55,000 dalton polypeptide component of the membrane sector of the mitochondrial oligomycin sensitive ATPase has been purified by recycling chromatography on BioGel P-100. The amino acid composition of the purified polypeptide differs significantly from that of the α-subunit of F1 with which it shares a similar apparent molecular weight. However, the amino acid composition of the former is identical to that of the Factor B polypeptide, which is known to occur in oligomeric forms. Evidence is presented which suggests that the mitochondrial uncoupler binding proteins and the various oligomeric forms of the Factor B polypeptide, including the 55,000 dalton species described in the present report, are identical.  相似文献   

15.
二化螟体内乙酰胆碱酯酶的分布及纯化方法   总被引:19,自引:1,他引:19  
研究了二化螟Chilo suppressalis乙酰胆碱酯酶(AChE)的体躯和亚细胞分布,并用凝胶过滤层析和2种亲和层析方法从二化螟幼虫体内分离、纯化乙酰胆碱酯酶。结果表明:二化螟幼虫乙酰胆碱酯酶的活性主要集中于头部和胸部,而成虫胸部乙酰胆碱酯酶的活性最低,显著低于头部和腹部。成虫体内AChE的活性明显高于幼虫。在亚细胞的分布上,乙酰胆碱酯酶主要位于膜上(86%),近46%的活性存在微粒体中。在3种纯化乙酰胆碱酯酶的方法中,以3-羧基苯基-乙基二甲基铵作配体的亲和层析法纯化效果最佳,乙酰胆碱酯酶的最高纯化倍数为536.05倍,产率30.46%。  相似文献   

16.
17.
An acetylcholinesterase (AChE, EC 3.1.1.7) was purified from the greenbug, Schizaphis graminum (Rondani). The maximum velocities (Vmax) for hydrolyzing acetylthiocholine (ATC), acetyl-(beta-methyl) thiocholine (AbetaMTC), propionylthiocholine, and S-butyrylthiocholine were 78.0, 67.0, 37.4, and 2.3 micromol/min/mg, and the Michaelis constants (Km) were 57.6, 60.6, 31.3, and 33.4 microM, respectively. More than 98% of AChE activity was inhibited by 10 microM eserine or BW284C51, but only 7% of the activity was inhibited by ethopropazine at the same concentration. Based on the substrate and inhibitor specificities, the purified enzyme appeared to be a true AChE. Nondenaturing polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing of the purified AChE revealed three molecular forms. The isoelectric points were 7.3 for the major form and 6.3 and 7.1 for two minor forms. The major form of purified AChE showed molecular masses of 129 kDa for its native protein and 72 kDa for its subunits on SDS-PAGE. However, the purified AChE exhibited some distinctive characteristics including: (1) lack of affinity to the affinity ligand 3-(carboxyphenyl) ethyldimethyl ammonium, which has been used widely in purification of AChE from various insect species; and (2) 20-200-fold higher substrate-inhibition thresholds for ATC and AbetaMTC than AChE from other insect species. These biochemical properties may reflect structural differences of AChE purified from the greenbug compared with that from other insect species.  相似文献   

18.
《Experimental mycology》1990,14(2):160-168
Different centrifugation conditions were compared for purification of chitosomes (microvesicles containing chitin synthetase). Isopycnic centrifugation of crude chitosome samples from yeast cells ofMucor rouxii on sucrose density gradients, in a vertical rotor, yielded chitosomes of higher purity than before. About 90–96% of the chitin synthetase in purified chitosomes was zymogenic. We estimated that the chitosome population of the yeast form ofM. rouxii comprises a miniscule portion (0.17%) of the total cell protein. The polypeptide composition of purified chitosomes was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. Prominent polypeptide bands were found at 16, 18, 28, 30, 32, 44, 47, and 55 kDa. The 55-kDa polypeptide was most conspicuous. There were also minor bands at 25, 26, 42, 60, 67, and 80 kDa. Our findings show that highly purified populations of chitosomes consist of microvesicles with a characteristic size range, buoyant density, and a complex polypeptide composition.  相似文献   

19.
The sensitivity of acetylcholinesterases (AChEs) from Musca domestica and from Drosophila melanogaster to the phosphatidylinositol-specific phospholipase C from Bacillus cereus and to the glycosylphosphatidylinositol-specific phospholipase C from Trypanosoma brucei was investigated. B. cereus phospholipase C solubilizes membrane-bound AChE, and both phospholipases convert amphiphilic AChEs into hydrophilic forms of the enzyme. The lipases uncover an immunological determinant that is found on other glycosylphosphatidylinositol-anchored membrane proteins after the same treatment. This immunological determinant is also present on the native hydrophilic form of AChE. The polypeptide bearing the active site of the membrane-bound enzyme migrates faster during sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the same polypeptide from the soluble enzyme. We conclude that AChE from insect brain is attached to membranes via a glycophospholipid anchor. This anchor is covalently linked to the polypeptide bearing the active esterase site of the enzyme and can be cleaved by an endogenous lipase.  相似文献   

20.
Acetylcholinesterace (AChE) is known to be the major target for organophophate and carbamate insecticides and biomolecular changes to AChE have been demonstrated to be an important mechanism for insecticide resistance in many insect species. In this study, AChE from three field populations of Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae) was purified by affinity chromatography and subsequently characterized by its Michaelis‐Menten kinetics to determine if detectable changes to AChE have occurred. Bioassays revealed that the potential resistance threat of psocids in Sichuan Province (GH) was greater than either Hubei Province (WH) or Chongqing Municipality (BB). Compared to the other two populations, the WH population possessed the highest specific activity of purified AChE. Kinetic analyses indicated that the purified AChE from GH population expressed a significantly lower affinity to the substrate and a higher catalytic activity toward acetylthiocholine iodide (ATChI) (i.e., higher Km and Vmax values) than BB and WH populations. In vitro studies of AChE suggest that five inhibitors (aldicarb, eserine, BW284C51, omethoate, and propoxur) all possess strong inhibitory effects with eserine having the strongest inhibitory effect against purified AChE. According to bimolecular rate constants (ki), the purified AChE from GH population was least sensitive to all inhibitors except for omethoate. The differences in AChE among the three populations may be partially attributed to the differences in pesticide application and control practices for psocids among the three locations. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号