首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of uninduced, phenobarbital and 3-methylcholanthrene induced rats with fluroxene and allyl-iso-propylacetamide decreased hepatic microsomal cytochrome P-450 and equivalently decreased microsomal heme, aniline binding and p-nitroanisole demethylase. In contrast, ethylmorpnine demethylase, benzpyrene-3-hydroxylase and ethoxyresofurin deethylase were not in all cases decreased in proportion to the loss of cytochrome P-450. After phenobarbital induction fluroxene and allyl-iso-propylacetamide degrade multiple forms of cytochrome P-450, but degrade in the greatest amounts the form(s) of cytochrome P-450 inducible by phenobarbital. After 3-methylcholanthrene induction fluroxene preferentially degrades cytochrome P-448, while allyl-iso-propylacetamide is relatively specific for the form(s) of cytochrome P-450 inducible by phenobarbital.  相似文献   

2.
Cytochrome P-450 was isolated in highly purified form from liver microsomes of adult male rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Preparations average 17.8 ± 0.8 nmoles cytochrome P-450 per mg protein and have an estimated molecular weight of 54,500. The visible absorption spectrum of the purified cytochrome displays absorption spectral maxima characteristic of high spin forms of cytochrome P-450. When reconstituted with highly purified NADPH-cytochrome P-450 reductase, this cytochrome catalyzes the hydroxylation of acetanilide and the O-deethylation of 7-ethoxyresorufin, two activities induced by TCDD.  相似文献   

3.
Total liver RNA has been isolated from male rats at different time points subsequent to a single injection of phenobarbital, and the level of cytochrome P-450 synthesis directed by these RNA preparations in a cell-free translation system has been determined. It is observed that the maximum in vitro synthesis of cytochrome P-450 occurs at 16 hours (3-fold above uninduced level) which is approximately 30 hours prior to the maximum induction of spectrophotometrically detectable cytochrome P-450 measured in liver homogenates. Thus, while cytochrome P-450 mRNA is involved in the induction process, its synthesis does not appear to be rate limiting. In addition, phenobarbital induced cytochrome P-450 is not synthesized in vitro in a form larger than that isolated from endoplasmic reticulum, but rather is also found to have a molecular weight of 50,000.  相似文献   

4.
Limitations on the determination of the concentration of the major phenobarbital inducible form of cytochrome P-450 (P-450b) in hepatic microsomes by the metyrapone assay of Luu-The et al. (1) are reported. Compounds which bind to the Type I, II and IR binding sites, or convert cytochrome P-450 to P-420, decrease the apparent concentration of cytochrome P-450b by 20 to 100% in hepatic microsomes from untreated and pregnenolone-16α-carbonitrile or phenobarbital treated rats. It is calculated that errors of greater ca. 40% in the concentration of cytochrome P-450b can arise in the presence of appreciable quantities of the major pregnenolone-16α-carbonitrile or polycyclic hydrocarbon inducible forms of cytochrome P-450.  相似文献   

5.
A procedure is described for the isolation of cytochrome P-450 fraction from hamster liver microsomes. It involves removal of NADPH-cytochrome c reductase activity by treatment with bacterial protease before solubilization with Triton X-100 and precipitation with ammonium sulfate. Reconstitution studies indicate that 2-acetylaminofluorene N-and ring-hydroxylation require both cytochrome P-450 fraction and the reductase fraction. N-hydroxylation activity of cytochrome P-450 fraction from 3-methylcholanthrene pretreated hamsters is different and severalfold greater than that of cytochrome P-450 fraction from controls. These results demonstrate for the first time an activation of a chemical carcinogen by a reconstituted cytochrome P-450 enzyme system.  相似文献   

6.
Cytochrome P-450 LM2 was reconstituted by the cholate-dialysis method into vesicles containing a mixture of either phosphatidylcholine or phosphatidylethanolamine with up to 50 mol% of phosphatidic acid. Phase transition curves in the presence or absence of cytochrome P-450 were obtained from electron paramagnetic resonance experiments by measuring the partitioning of 2,2,6,6-tetramethylpiperidine-1-oxyl. Protein-free phospholipid vesicles exhibit a phase separation into domains of gel phase enriched in phosphatidic acid in a surrounding fluid matrix containing mainly phosphatidylcholine. The phase transition of the phosphatidic acid domains disappeared following incorporation of cytochrome P-450 into the bilayers. In contrast, in vesicles containing mixtures of egg-phosphatidic acid and dimyristoyl phosphatidylcholine, the phase transition of the domains enriched in dimyristoyl phosphatidylcholine was less sharp than in the corresponding vesicles containing cytochrome P-450. The results of both of these experiments could be explained by a redistribution of the mol fraction of the two phospholipids in the gel phase due to preferential binding of the egg-phosphatidic acid to the cytochrome P-450. For comparison, incorporation of cytochrome P-450 into uncharged vesicles of dimyristoyl phosphatidylcholine and egg-phosphatidylethanolamine did not alter the  相似文献   

7.
The lifetime of different microsomal steroidogenic enzymes and the cytochrome components of the NADPH-cytochrome P-450 pathway have been determined in rat testis by measuring their decrease logarithmically after hypophysectomy. Although both cytochrome P-450 and 17α-hydroxylase show biphasic decay curves, the first decay curve contains 89–94% of the cytochrome P-450 and 17α-hydroxylase levels. Steroidogenic enzymes which are located mainly in the leydig cells, decay much faster than microsomal protein, t12 = 12 days, which represents mainly decay of tubular protein. The similarity between the major half-life of cytochrome P-450, t12 = 3.3 days, 17α-hydroxylase, t12 = 2.3 days and the C17–C20 lyase, t12 = 3.4 days and the uniformity of their response to human chorionic gonadotrophin (HCG) provides additional evidence that these two steroidogenic enzymes require cytochrome P-450. Both the 17α-hydroxylase and the C17–C20 lyase were shown to have a constant activity per nmole of cytochrome P-450 during a sixfold change in the level of cytochrome P-450 brought about by HCG treatment of rats with intact pituitaries. The decay of 17β-hydroxysteroid dehydrogenase, t12 = 4.5 days, was slower than P-450 dependent enzymes. Rats with intact pituitaries are not under maximal stimulation by endogenous LH because addition of HCG increases the levels of microsomal and mitochondrial cytochrome P-450 220 and 1620%, respectively. The rates of synthesis during the increase from one cytochrome P-450 level to another was calculated at 0.1182 testes/day for microsomal cytochrome P-450 and 0.10 nmoles/2 testes/day for mitochondrial cytochrome P-450. Treatment of hypophysectomized rats with HCG results in large increases of cytochrome P-450, 17α-hydroxylase, C17–C20 lyase and 5α-reductase, but not cytochrome b5, microsomal protein, 7α-hydroxylase, or the 17β-hydroxysteroid dehydrogenase. While it is clear that the two cytochrome P-450 dependent hydroxylases involved in steroidogenesis and the 5α-reductase are under the control of gonadotrophin, it is not clear how 17β-hydroxysteroid dehydrogenase levels are maintained or in what manner the 5α-reductase level is controlled in mature animals.  相似文献   

8.
The role of cytochrome b5 in the p-nitroanisole O-demethylation was studied with a reconstituted system containing a unique cytochrome P-450, isolated from rabbit liver microsomes as a species with a high affinity for cytochrome b5. The maximal activity was obtained in the complete system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, NADH-cytochrome b5 reductase, and Triton X-100 in addition to cytochrome b5. The omission of cytochrome b5 from the complete system entirely abolished the activity. These results clearly show that cytochrome b5 is obligatory in the reconstitute p-nitroanisole O-demethylation system, and this cytochrome P-450 probably interacts with cytochrome b5 in such a way that the second electron is transferred from cytochrome b5 and thus exhibits the demethylase activity.  相似文献   

9.
Cell lines derived from Reuber H-4-II-E hepatoma cells and their hybrids that differ in the expression of liver-specific functions are shown to contain different forms of monooxygenases. According to 1) the specificity toward the substrates benzo(a)pyrene, aldrin and chenodexycholic acid, 2) the kinetics of the epoxidation of aldrin, 3) the response to inducers, such as benz(a)anthracene and dexamethasone, and 4) the invitro modifier 7,8-benzoflavone, the monooxygenases predominating in differentiated cell lines belong to the cytochrome P-450-dependent enzyme(s), those in the less differentiated lines belong to the cytochrome P-448-dependent form(s).  相似文献   

10.
Sedimentation equilibrium and sedimentation velocity measurements were carried out on cytochrome P-450LM2 from phenobarbital-treated rabbit liver and on cytochrome P-450LM4 from 5,6-benzoflavone-treated rabbit liver in the presence of the nonionic detergent 1-O-n-octyl-β-D-glucopyranoside. P-450LM2 was monomeric with a molecular weight of 48,800 and a Stokes radius of 3.1 nm in 7 g/l detergent and P-450LM4 was monomeric with a molecular weight of 49,800 and a Stokes radius of 2.6 nm at 5 g/l detergent. Both particles were spherical in shape under these conditions. Neither cytochrome was irreversibly denatured at these detergent concentrations as indicated by the ability to form substantial amounts (>60%) of the CO adduct with an absorption maximum at 451 nm (P-450LM2) or 448 nm (P-450LM4) when diluted into detergent-free buffer containing CO and sodium dithionite.  相似文献   

11.
The association of fatty acids, androstane, phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid with purified and phospholipid-vesicle reconstituted cytochrome P-450 was studied by spin labeling. Spin-labeled fatty acids were found to be motionally restricted by cytochrome P-450 in both phospholipid vesicles and in microsomes to a much greater extent than spin-labeled phospholipids. The equilibrium of spin-labeled fatty acid between the bulk membrane lipid and the protein interface could be shifted towards an increased amount in the bulk phospholipid phase by the addition of oleic acid or lysophosphatidylcholine, but not by sodium cholate. Microsomes from different animals showed a variable extent of motional restriction of fatty acids, independent of pretreatment of the animals with phenobarbital or β-naphthoflavone, of cytochrome P-450 content, of the presence of type I and type II substrates for cytochrome P-450. These differences are attributed to the presence of varying amounts of lipid breakdown products in the microsomal membrane such as lysolipids or fatty acids which compete with the externally added spin-labeled fatty acids, or with spin-labeled androstane for the binding to cytochrome P-450. The negative charge of the fatty acid was found to be involved in its association with the protein. Cytochrome P-450 was shown to interact only with a few spin-labeled phospholipid molecules in such a way that the motional restriction of the spin acyl chains can be detected by electron paramagnetic resonance (τR > 10?8s). The number of associated lipid molecules per protein probably is too small to form a complete shell around the protein. This lipid-protein interaction could be destroyed by the addition of sodium cholate, in contrast to the fatty acid-protein interaction.  相似文献   

12.
Hepatic microsonal cytochrome P-450 levels are significantly decreased (46–68%) in ascorbic acid-deficient guinea pigs. Studies attempting to elucidate the mechanism responsible for decreased cytochrome P-450 demonstrated that ascorbic acid status did not influence the turnover (t12) or the degradation of hepatic cytochrome P-450 heme. Urinary excretion of Δ-aminolevulinic acid (ALA) and coproporphyrin was significantly decreased (30 and 69% respectively) in ascorbic acid-deficient guinea pigs. Injections (ip) of ALA into ascorbic acid-deficient guinea pigs were not effective in returning cytochrome P-450 levels to values found in ascorbic acid-supplemented guinea pigs. In addition, plasma and hepatic iron and blood heme were related directly, while hepatic copper and plasma copper or ceruloplasmin were related inversely, to the ascorbic-acid status of the guinea pig. These data, along with past investigations on heme synthesis in the ascorbic acid-deficient guinea pig, are consistent with mechanisms proposing that ascorbic acid may influence: 1) apocytochrome P-450 synthesis, 2) binding of heme and apo-cytochrome P-450 to form active cytochrome P-450, and/or 3) incorporation of Fe++ into the heme moiety of cytochrome P-450, perhaps via changes in copper metabolism.  相似文献   

13.
Stopped flow spectrophotometry has shown the occurrence of two distinct spectral intermediates in the reaction of oxygen with the reduced form of highly purified cytochrome P-450 from liver microsomes. As indicated by difference spectra, Complex I (with maxima at 430 and 450 nm) is rapidly formed and then decays to form Complex II (with a broad maximum at 440 nm), which resembles the intermediate seen in steady state experiments. In the reaction sequence, P-450LMredO2Complex I→Complex II→P-450LMox the last step is rate-limiting. The rate of that step is inadequate to account for the known turnover number of the enzyme in benzphetamine hydroxylation unless NADPH-cytochrome P-450 reductase or cytochrome b5 is added. The latter protein does not appear to function as an electron carrier in this process.  相似文献   

14.
In the presence of hepatic microsomes, vinyl chloride produces a ‘type I’ difference spectrum and stimulates carbon monoxide inhibitable NADPH consumption. A comparison of the binding and Michaelis parameters for the interaction of vinyl chloride with uninduced, phenobarbital and 3-methylcholanthrene induced microsomes indicates that the binding and metabolism of vinyl chloride is catalyzed by more than one type P-450 cytochrome, but predominantly by cytochrome P-450. Metabolites of vinyl chloride from this enzyme system decrease the levels of cytochrome P-450 and microsomal heme, but not cytochrome b5 or NADPH-cytochrome c reductase in vitro.  相似文献   

15.
NADPH reduces both liver microsomal cytochrome P-450 and cytochrome b5. In the presence of CO, ferrous cytochrome P-450 can slowly transfer electrons to amaranth, an azo dye. This reaction is followed by the reoxidation of cytochrome b5 which proceeds at essentially the same rate as does cytochrome P-450 oxidation. It is suggested that cytochrome b5 directly reduces cytochrome P-450 in rat liver microsomes.  相似文献   

16.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

17.
Addition of p-nitroanisole to a reaction mixture containing phenobarbital-pretreated rabbit liver microsomes brings about an increase the reoxidation rate of NADH-reduced cytochrome b5. Addition of partially purified cytochrome b5 to a solution containing microsomes results in a marked increase in both NADH- and NADPH-dependent O-demethylation of p-nitroanisole. p-Nitroanisole also increases the rate of NADH mediated cytochrome P-450 reduction. From these and other results described in the Discussion section, we confirm that electrons required for NADH-dependent O-demethylation of p-nitroanisole is transfered from NADH to cytochrome P-450 via cytochrome b5 and that cytochrome P-450 is the enzyme which catalyzes p-nitroanisole O-demethylation.  相似文献   

18.
The suggestion that a rapidly sedimenting rough endoplasmic reticulum fraction in close association with mitochondria, is the preferred site of cytochrome P-450 synthesis has been examined. The rate of cytochrome P-450 synthesis in the different subcellular fractions has been evaluated invivoandinvitro, using the immunoprecipitation technique. The results indicate that the conventional microsomal fraction (100,000 X g sediment) is the major site of cytochrome P-450 synthesis and that the rapidly sedimenting rough endoplasmic reticulum fraction associated with mitochondria is not a preferred site for the hemoprotein synthesis.  相似文献   

19.
Invitro synthesis of mitochondrial cytochromes P-450(scc) and P-450(11-β), and microsomal cytochrome P-450(C-21) programmed by bovine adrenal cortex polysomes was carried out using rat liver cell sap and wheat germ lysate systems. Synthesis of P-450 proteins in the cell-free systems was determined by immunoprecipitation and immunoadsorption using mono-specific antibodies to each species of P-450, and the sizes of the invitro products were analyzed by SDS-polyacrylamide gel electrophoresis. Both free and bound polysomes synthesized these three species of P-450 in the cell-free systems. P-450(scc) and P-450(C-21) were synthesized apparently as the mature size products, whereas P-450(11-β) was synthesized as a putative precursor approximately 5,000 daltons larger than the mature form. Mitochondrial and microsomal P-450 proteins seem to share common sites of synthesis in the cytoplasm of adrenal cortex cells.  相似文献   

20.
Liver cytochrome P-450 from rats treated intraperitoneally with troleandomycin (TAO) were solubilized and partially purified using DE 52 anion exchange chromatography. The major TAO-induced cytochrome P-450 form appears in fraction A which is not bound on the DE 52 column. It is different from the major form induced in rats by phenobarbital or 3-methylcholanthrene in terms of absolute visible spectroscopy, gel electrophoresis (M 45000) and reactions with antibodies. This TAO-induced form mainly exists in vivo as an iron-TAO metabolite complex and exhibits a characteristic Soret peak at 456 nm. Reconstitution experiments using this partially purified form, after dissociation of its iron-metabolite bond by ferricyanide treatment, underline its particular ability to demethylate TAO itself. TAO also leads to an important induction of other cytochromes P-450 that are present in fraction B (retained on DE 52 column) like the major phenobarbital-induced form, but are immunologically distinct from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号