首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Plant tissues contain large amounts of secondary compounds that significantly interfere with protein extraction and 2DE analysis. Thus, sample preparation is a crucial step prior to 2DE in plant proteomics. This tutorial highlights the guidelines that need to be followed to perform an adequate total protein extraction before 2DE in plant proteomics. We briefly describe the history, development, and feature of major sample preparation methods for the 2DE analysis of plant tissues, that is, trichloroacetic acid/acetone precipitation and phenol extraction. We introduce the interfering compounds in plant tissues and the general guidelines for tissue disruption, protein precipitation and resolubilization. We describe in details the advantages, limitations, and application of the trichloroacetic acid/acetone precipitation and phenol extraction methods to enable the readers to select the appropriate method for a specific species, tissue, or cell type. The current applications of the sample preparation methods in plant proteomics in the literature are analyzed. A comparative proteomic analysis between male and female plants of Pistacia chinensis is used as an example to represent the sample preparation methodology in 2DE‐based proteomics. Finally, the current limitations and future development of these sample preparation methods are discussed. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP17).  相似文献   

2.
ABSTRACT

Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging.

Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome.

Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.  相似文献   

3.
Network Genomics studies genomics and proteomics foundations of cellular networks in biological systems. It complements systems biology in providing information on elements, their interaction and their functional interplay in cellular networks. The relationship between genomic and proteomic high-throughput technologies and computational methods are described, as well as several examples of specific network genomic application are presented.  相似文献   

4.
氧化亚铁硫杆菌(At.f)是能够利用Fe2 和硫化矿来获取能量的一种化能自养菌.这种细菌在金属硫化矿的生物浸出中起着重要的作用.在硫化矿的生物浸出过程中,浸矿细菌通常会遇到多种胁迫条件,如温度的变化、营养成分的缺失和pH值的变化等,这些因素会影响到细菌的活性.因此对在胁迫条件下这类细菌的应急反应生理机制的研究具有重要的意义.SELDI蛋白质芯片技术是近年一种高通量的蛋白质组学研究技术.测定了以Fe2 为能源正常条件培养的At.f和磷酸盐缺失培养At.f的生长情况,绘制了相应的生长曲线;采用NP20蛋白质芯片,对At.f总蛋白的蛋白质芯片上样量进行了优化.在此基础上,采用IMAC-Cu、SAX2、WCX2三种特异性SELDI蛋白质芯片技术,获取了磷酸盐缺失培养At.f与正常条件培养的At.f的比较蛋白质图谱,采用软件对比较蛋白质图谱进行分析,发现了磷酸盐缺失培养At.f的13个明显差异表达的蛋白质分子,为进一步分离鉴定这些差异表达蛋白质奠定了基础.  相似文献   

5.
6.
7.
Following the completion of genome sequencing of model plants, such as rice (Oryza sativa L.) and Arabidopsis thaliana, the era of functional plant genomics has arrived which provides a solid basis for the development of plant proteomics. We review the background and concepts of proteomics, as well as the key techniques which include: (1) separation techniques such as 2-DE (two-dimensional electrophoresis), RP-HPLC (reverse phase high performance liquid chromatography) and SELDI (surface enhanced laser desorption/ionization) protein chip; (2) mass spectrometry such as MALDI-TOF-MS (matrix assisted laser desorption/ionizationtime of flight-mass spectrometry) and ESI-MS/MS (electrospray ionization mass spectrometry/mass spectrometry); (3) Peptide sequence tags; (4) databases related to proteomics; (5) quantitative proteome; (6) TAP (tandem affinity purification) and (7) yeast two-hybrid system. In addition, the challenges and prospects of proteomics are also discussed. __________ Translated from Heredtas (Beijing), 2006, 28(11): 1472–1486 [译自: 遗传]  相似文献   

8.
基于质谱的植物蛋白质组学研究方法,从定性和定量蛋白质组学两个方向进行了归纳总结,并对近年来出现的靶向蛋白质组学、DIA/SWATH技术、化学蛋白质组学,以及多组学联合分析等蛋白质组学研究的新技术、新方法和新应用进行了综述。  相似文献   

9.
10.
The mechanisms underlying the functional link between autophagy and plant innate immunity remain largely unknown. In this study, we investigated the autophagy-mediated plant defense responses against Verticillium dahliae (V. dahliae) infection by comparative proteomics and cellular analyses. An assessment of the autophagy activity and disease development showed that autophagic processes were tightly related to the tolerance of Arabidopsis plant to Verticillium wilt. An isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics analysis was performed, and we identified a total of 780 differentially accumulated proteins (DAPs) between wild-type and mutant atg10-1 Arabidopsis plants upon V. dahliae infection, of which, 193 ATG8-family-interacting proteins were identified in silico and their associations with autophagy were verified for several selected proteins. Three important aspects of autophagy-mediated defense against V. dahliae infection were revealed: 1) autophagy is required for the activation of upstream defense responses; 2) autophagy-mediated mitochondrial degradation (mitophagy) occurs and is an important player in the defense process; and 3) autophagy promotes the transdifferentiation of perivascular cells and the formation of xylem hyperplasia, which are crucial for protection against this vascular disease. Together, our results provide several novel insights for understanding the functional association between autophagy and plant immune responses.  相似文献   

11.

Background  

After complete sequencing of a number of genomes the focus has now turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, mass spectrometry etc. are producing huge data sets of protein-protein interactions which can be portrayed as networks, and one of the burning issues is to find protein complexes in such networks. The enormous size of protein-protein interaction (PPI) networks warrants development of efficient computational methods for extraction of significant complexes.  相似文献   

12.
Abstract

In recent years, Laser Microdissection (LM), which has been widely used in animal biology, has been adapted to plant tissues. This short paper focuses on some technical aspects concerning plant sample preparation for LM technology, with particular attention to the application of gene expression and proteomics studies. Examples derived from the use of different LM methods are reported and their applications to plant–microbe interactions are explored.  相似文献   

13.
Evaluation of: Deighton RF, Kerr LE, Short DM et al. Network generation enhances interpretation of proteomics data from induced apoptosis. Proteomics DOI: 10.1002/pmic.200900112 (2010) (Epub ahead of print).

The huge ongoing improvements in proteomics technologies, including the development of high-throughput mass spectrometry, are resulting in ever increasing information on protein behavior during cellular processes. The exponential accumulation of proteomics data has the promise to advance biomedical sciences by shedding light on the most important events that regulate mammalian cells under normal and pathophysiological conditions. This may provide practical insights that will impact medical practice and therapy, and may permit the development of a new generation of personalized therapeutics. Proteomics, as a powerful tool, creates numerous opportunities as well as challenges. At the different stages, data interpretation requires proteomics analysis, various tools to help deal with large proteomics data banks and the extraction of more functional information. Network analysis tools facilitate proteomics data interpretation and predict protein functions, functional interactions and in silica identification of intracellular pathways. The work reported by Deighton and colleagues illustrates an example of improving proteomics data interpretation by network generation. The authors used ingenuity pathway analysis to generate a protein network predicting direct and indirect interaction between 13 proteins found to be affected by staurosporine treatment. Importantly, the authors highlight the caution required when interpreting the results from a small number of proteins analyzed using network analysis tools.  相似文献   

14.
15.
16.
Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE‐LC‐MS/MS and LC‐MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin‐converting enzyme (an M2 metalloprotease), an M1 zinc‐dependant metalloprotease, a glucose‐methanol‐choline (GMC)‐oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium‐binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium‐mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.  相似文献   

17.
Staphylococcus aureus is a versatile Gram‐positive pathogen that gains increasing importance due to the rapid spreading of resistances. Functional genomics technologies can provide new insights into the adaptational network of this bacterium and its response to environmental challenges. While functional genomics technologies, including proteomics, have been extensively used to study these phenomena in shake flask cultures, studies of bacteria from in vivo settings lack behind. Particularly for proteomics studies, the major bottleneck is the lack of sufficient proteomic coverage for low numbers of cells. In this study, we introduce a workflow that combines a pulse‐chase stable isotope labelling by amino acids in cell culture approach with high capacity cell sorting, on‐membrane digestion, and high‐sensitivity MS to detect and quantitatively monitor several hundred S. aureus proteins from a few million internalised bacteria. This workflow has been used in a proof‐of‐principle experiment to reveal changes in levels of proteins with a function in protection against oxidative damage and adaptation of cell wall synthesis in strain RN1HG upon internalisation by S9 human bronchial epithelial cells.  相似文献   

18.
The latest IUCN statistics show that of over 12,000 plant species, 70% are threatened, 19% are critically endangered and 28 species are extinct in the wild. Target 8 of the Global Strategy for Plant Conservation (GSPC) highlights the importance of ex situ conservation of critically endangered plants. Long-term germplasm storage for species with recalcitrant seeds needs alternative measures. In vitro methods complement seed banking and other ex situ measures and are vital for long-term conservation. Conservation Biotechnology at RBG Kew is currently working on a number of rare and threatened recalcitrant species from biodiversity-rich areas of the world to develop good quality in vitro propagules for cryopreservation, recovery and restoration projects. The importance of successful in vitro propagation methods, transplantation technologies, cryopreservation and international networking for the integrated conservation of these species are discussed in detail.  相似文献   

19.
Predicting protein–protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high‐throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM‐BiGP that combines the relevance vector machine (RVM) model and Bi‐gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi‐gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five‐fold cross‐validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state‐of‐the‐art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM‐BiGP method is significantly better than the SVM‐based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future proteomics research. For facilitating extensive studies for future proteomics research, we developed a freely available web server called RVM‐BiGP‐PPIs in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/BiGP/ .  相似文献   

20.
Biodiversity conservation and conservation biotechnology tools   总被引:1,自引:0,他引:1  
This special issue is dedicated to the in vitro tools and methods used to conserve the genetic diversity of rare and threatened plant species from around the world. Species that are on the brink of extinction because of the rapid loss of genetic diversity and habitat come mainly from resource-poor areas of the world and from global biodiversity hotspots and island countries. These species are unique because they are endemic, and only a few small populations or sometimes only a few individuals remain in the wild. Therefore, the challenges to support conservation by in vitro measures are many and varied. The editors of this invited issue solicited papers from experts from Asia, Africa, Europe, Australia, and North and South America. This compilation of articles describes the efforts in these diverse regions toward saving plants from extinction, and details the direct application of in vitro and cryopreservation methods. In addition, these contributions provide guidance on propagation of rare plants, including techniques for large-scale propagation, storage, and reintroduction. The in vitro techniques for conserving plant biodiversity include shoot apical or axillary-meristem-based micropropagation, somatic embryogenesis, cell culture technologies and embryo rescue techniques, as well as a range of in vitro cold storage and cryopreservation protocols, and they are discussed in depth in this issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号