首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of reductive iron release from Fe(III) complexes of phosvitins of diverse fish species, at varied initial degrees of saturation with iron, was studied with particular attention to the effect of the degree of phosvitin phosphorylation on the kinetics of iron release. The reaction was followed colorimetrically as phosphorprotein-bound iron was transferred to an excess of o-phenanthroline, in the presence of hydroquinone as a reducing agent. The principal finding was the variability of the kinetic order or iron release by phosvitins, depending on their degree of saturation with iron and the extent to which their serine residues were phosphorylated. Highly phosphorylated proteins, especially at high initial degrees of iron saturation, obey first-order kinetics. Partially phosphorylated proteins, especially at low initial degrees of iron saturation, release their iron in a zero-order fashion. First-order rates imply that the iron binding sites are kinetically independent of each other. Zero-order behavior appears to reflect iron release from hypothetical iron-binding clusters serving as kinetically effective reactive centers of unchanging concentration for most of the time course of the reaction. Variations of the initial degree of iron saturation of given phosvitins produced variations in their kinetic behavior. The results are considered in terms of a dynamic model of phosvitin iron binding sites which may constitute themselves diversely, in response to the amount of iron that is to be accommodated, or may reconstitute themselves as their molecular environment becomes altered.  相似文献   

2.
Serum transferrin is the protein that transports ferric ion through the bloodstream and is thus a potential target for iron chelation therapy. However, the release of iron from transferrin to low-molecular-weight chelating agents is usually quite slow. Thus a better understanding of the mechanism for iron release is important to assist in the design of more effective agents for iron removal. This paper describes the effect of sulfonate anions on the rates of iron removal from C-terminal monoferric transferrin by acetohydroxamic acid, deferiprone, nitrilotriacetic acid (NTA), and diethylenetriaminepentaacetic acid at 25 °C in 0.1 M N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (Hepes) buffer at pH 7.4. These ligands remove iron via a combination of pathways that show saturation and first order dependence on the ligand concentration. The kinetic effects of the anions methanesulfonate, methylenedisulfonate, and ethylenedisulfonate were evaluated. All these anions increase the overall rates of iron release, presumably by binding to an allosteric anion binding site on the protein. The two disulfonates produce a larger acceleration in iron release than the monosulfonate. More detailed studies using methylenedisulfonate show that this anion accelerates the rate of iron release via the saturation pathway. The addition of methylenedisulfonate results in the appearance of a large saturation pathway for iron release by NTA, which otherwise removes iron by a simple first-order process. The sulfonate group was selected for these studies because it represents an anionic functional group that can be covalently linked to a therapeutic ligand to accelerate iron release in vivo. The current studies indicate that the binding of the sulfonates to the allosteric site on the protein is quite weak, so that one would not expect a significant acceleration in iron release at clinically relevant ligand concentrations.  相似文献   

3.
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 enhanced the release of Fe2+ from transferrin eightfold in association with marked generation of O2-. The release of Fe2+ was inhibited by addition of superoxide dismutase (SOD), indicating that the release of Fe2+ was dependent on PMN-derived extracellular O2-. In contrast, at physiologic pH (7.4), incubation of transferrin at physiological levels of iron saturation (e.g. 32%) with unstimulated or PMA stimulated PMNs failed to facilitate the release of Fe2+. The effect of decreasing the pH on the release of Fe2+ from transferrin by PMN-derived O2- was determined. Decreasing the pH greatly facilitated the release of Fe2+ from both holosaturated transferrin and from transferrin at physiological levels of iron saturation by PMN-derived O2-. Release of Fe2+ occurred despite a decrease in the amount of extracellular O2- generated by PMNs in an acidic environment. These results suggest that transferrin at physiologic levels of iron saturation may serve as a source of Fe2+ for biological reactions in disease states where activated phagocytes are present and there is a decrease in tissue pH. The unbound iron could participate in biological reactions including promoting propagation of lipid peroxidation reactions or hydroxyl radical formation following reaction with phagocytic cell-derived hydrogen peroxide.  相似文献   

4.
The effects of various maneuvers on the handling of 59Fe-labeled heat-damaged red cells (59Fe HDRC) by the reticuloendothelial system were studied in rats. Raising the saturation of transferrin with oral carbonyl iron had little effect on splenic release of 59Fe but markedly inhibited hepatic release. Splenic 59Fe release was, however, inhibited by the prior administration of unlabeled HDRC or by the combination of carbonyl iron and unlabeled HDRC. When carbonyl iron was administered with unlabeled free hemoglobin, the pattern of 59Fe distribution was the same as that observed when carbonyl iron was given alone. 59Fe ferritin was identified in the serum after the administration of 59Fe HDRC but the size of the fraction was not affected by raising the saturation of transferrin. Sizing column analyses of tissue extracts from the spleen at various times after the administration of 59Fe HDRC revealed a progressive shift from hemoglobin to ferritin, with only small amounts present in a small molecular weight fraction. The small molecular weight fraction was greater in hepatic extracts, with the difference being marked in animals that had received prior carbonyl iron. The increased hepatic retention of 59Fe associated with a raised saturation of transferrin was reduced by a hydrophobic ferrous chelator (2,2'-bipyridine), a hydrophilic ferric chelator (desferrioxamine), and an extracellular hydrophilic ferric chelator (diethylene-triaminepentacetic acid). Transmembrane iron transport did not seem to be a rate-limiting factor in iron release, since no differences in 59Fe membrane fractions were noted in the different experimental settings. These findings are consistent with a model in which RE cells release iron from catabolized red cells at a relatively constant rate. When the saturation of transferrin is raised, a significant proportion of the iron is transported from the spleen to the liver either in small molecular weight complexes or in ferritin. Although a saturated transferrin had no effect on the release of iron from reticuloendothelial cells, prior loading with HDRC conditions them to release less iron.  相似文献   

5.
The mechanism of ascorbate-promoted ferritin iron reduction under aerobic conditions was studied. The initial rate of ferritin iron release was determined by spectrophotometric measurement of the Fe(ferrozine)3(2+) complex which absorbs at 562 nm. Variation of the initial ferrozine concentration had no influence on the rate of iron release suggesting that ferrozine does not participate in the rate-determining step. Experimental measurements of the initial rate of iron release as a function of ascorbate concentration resulted in saturation kinetics with Vmax = 2.0 X 10(-7) M.min-1 and KM = 1.3 X 10(-3) M. The effect of pH was quite pronounced with a maximal rate of iron release at pH 7.0. Stoichiometric measurements on the reaction mixture, with added catalase, resulted in a ratio of 2 Fe(II) released per ascorbate. Ascorbate-mediated iron release was inhibited 85% by superoxide dismutase, but 0% inhibition was noted with aposuperoxide dismutase. It is proposed that superoxide ion, generated during the iron-promoted oxidation of ascorbate, acts as a reductant of ferritin iron. A mechanism of ferritin iron release consistent with these experimental observations is discussed.  相似文献   

6.
The ferric binding protein (FbpA) transports iron across the periplasmic space of certain Gram-negative bacteria and is an important component involved in iron acquisition by pathogenic Neisseria spp. (Neisseria gonorrheae and Neisseria meningitidis). Previous work has demonstrated that the synergistic anion, required for tight Fe(3+) sequestration by FbpA, also plays a key role in inserting Fe(3+) into the FbpA binding site. Here, we investigate the iron release process from various forms of holo-FbpA, Fe(3+)FbpA-X, during the course of a chelator competition reaction using EDTA and Tiron. Fe(3+)FbpA-X represents the protein assembly complex with different synergistic anions, X = PO(4)(3)(-) and NTA. Stepwise mechanisms of Fe(3+) release are proposed on the basis of kinetic profiles of these chelator competition reactions. Fe(3+)FbpA-PO(4) and Fe(3+)FbpA-NTA react differently with EDTA and Tiron during the Fe(3+)-exchange process. EDTA replaces PO(4)(3)(-) and NTA from the first coordination shell of Fe(3+) and acts as a synergistic anion to give a spectroscopically distinguishable intermediate, Fe(3+)FbpA-EDTA, prior to pulling Fe(3+) out of the protein. Tiron, on the other hand, does not act as a synergistic anion but is a more efficient competing chelator as it removes Fe(3+) from FbpA at rate much faster than EDTA. These results reaffirm the contribution of the synergistic anion to the FbpA iron transport process as the anion, in addition to playing a facilitative role in iron binding, appears to have a "gatekeeper" role, thereby modulating the Fe(3+) release process.  相似文献   

7.
The most prominent role of mammalian ferritins is to provide an extensive iron-buffering capacity to cells. The large ferritin iron stores can be mobilized in vitro, but the functional relevance of the most efficient iron releasing agents remains elusive. Sulfide is a strongly reducing chemical generated by a series of enzymes. In the presence of limited amounts of sulfide a continuous rate of iron release from ferritin was observed and a majority of the protein iron core was recovered in solution. The rate constants for iron efflux triggered by several reducing or chelating compounds have been measured and compared. Although not as efficient as reduced flavins, sulfide displayed kinetic parameters which suggest a potential physiological role for the chalcogenide in converting the iron storage protein into apoferritin. To further probe the relevance of sulfide in the mobilization of iron, several enzymes, such as NifS, rhodanese, or sulfite reductase generating reduced forms of sulfur by different mechanisms, have been assayed for their ability to catalyze the release of iron from ferritin. The results show that full reduction of sulfur into sulfide is needed to deplete iron from ferritin. These reactions suggest links between sulfur metabolism and intracellular iron homeostasis.  相似文献   

8.
The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular "labile iron pool" that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase-dependent mechanism, possibly involving generation of a negative iron gradient.  相似文献   

9.
Specifically labeled 59Fe ghosts have been prepared by incubation of whole reticulocytes with 59Fe3+-transferrin-CO3(2)-- followed by washing and ghost isolation. The binding of 59Fe by the membrane fraction is quite stable over a wide range of conditions, but iron mobilization occurs on incubation with chelating agents or cell lysate. The time course of 59Fe mobilization by unlabeled reticulocyte lysate exhibits five apparently zero-order phases. The rate of iron mobilization is linearly dependent on the concentration of 59Fe ghosts present in the incubation mixture. In contrast, the relative concentration of lysate appears to exhibit a saturation dependence with regard to membrane iron mobilization. Bathophenanthroline sulfonate follows a multiphasic time course of iron mobilization similar to that found with the lysate. Lysate from mature erythrocytes was found to mobilize iron with kinetics that are identical to reticulocyte lysate. The number and duration of the phases is independent of the mobilizing agent. The role of the membrane fraction in regulating the rate of iron release to cytosol was also investigated by the repetitive incubation of 59Fe ghosts with fresh lysate. The rate of 59Fe mobilization depended on the condition of the ghost with regard to prior 59Fe depletion. This publication emphasizes the active role of the membrane fraction in determining the rate at which iron will become available to the cytosol and the possibility that cytosol factors modulate the action of membrane bound components.  相似文献   

10.
On the limited ability of superoxide to release iron from ferritin   总被引:3,自引:0,他引:3  
Reductive release of iron from ferritin may catalyze cytotoxic radical reactions like the Haber-Weiss reaction. The ability of .O2- to mobilize Fe(II) from ferritin was studied by using the xanthine/xanthine oxidase reaction, with and without superoxide dismutase, and with bathophenanthroline sulphonate as the chelator. Not more than one or two Fe(II)/ferritin molecules could be released by an .O2(-)-dependent mechanism, even after repeated exposures of ferritin to bursts of .O2-. The amount of releaseable iron depended on the size and the age of the iron core, but not on the iron content of the protein shell of ferritin which was manipulated by chelators and addition of FeCl3. The kinetic characteristics of the .O2(-)-mediated iron release indicated the presence of a small pool of readily available iron at the surface of the core. The very limited .O2(-)-dependent release of iron from ferritin is compatible with a protective role of ferritin against toxic iron-catalyzed reactions.  相似文献   

11.
Iron release process of ovotransferrin N-lobe (N-oTf) to anion/chelators has been resolved using kinetic and mechanistic approach. The iron release kinetics of N-oTf were measured at the endosomal pH of 5.6 with three different anions such as nitrilotriacetate, pyrophosphate, and sulfate using stopped flow spectrofluorimetric method, all yielding clear biphasic progress curves. The two observed rate constants and the corresponding amplitudes obtained from the double exponential curve fit to the biphasic curves varied depending on the type and concentration of anions. Several possible models for the iron release kinetic mechanism were examined on the basis of a newly introduced quantitative equation. Results from the curve fitting analyses were consistent with a dual pathway mechanism that includes the competitive iron release from two different protein states, namely, X and Y, with the respective first order rate constants of K(1) and K(2) (X, domain closed holo N-oTf; Y, anion induced different conformer of holo N-oTf). The reversible interconversions of X to Y and Y to X are driven by the second order rate constant k(3) and the first order rate constant K(4), respectively. The obtained rate constants were greatly variable for the three anions depending on the synergistic or nonsynergistic nature. In the light of the anion-binding sites of N-oTf located crystallographically, the compatible mechanistic model that includes competitive anion binding to the iron coordination sites and to a specific anion site is suggested for the dual pathway iron release mechanism.  相似文献   

12.
The rate of iron release from the N-terminal and C-terminal monoferrictransferrins (FeN-transferrin and FeC-transferrin, respectively) has been studied at 37°C over the pH range 3.5–10.6 using EDTA as the accepting chelate. FeN-transferrin is the more facile except above pH 8.2. Plots of log10kobs against pH showed a deviation for both monoferrictransferrins between pH 5.6 and 6.0 and studies above and below this transition point indicated that iron release occures by different mechanisms. At low pH (< 5.6) the rate of release from FeN-transferrin is independent of the presence of EDTA or NaClO4, whereas Fec-transferrin shows a small but significant increase with increasing EDTA concentration. Rapid protonation of both monoferrictransferrins is followed by relatively slow release of Fe3+ which is subsequently chelated by EDTA. The slower release from Fec-transferrin is probably due to its greater binding strength for iron and the greater conformational stability of the C-terminal domain. Above pH 6.0 iron release from both monoferrictransferrins increases as the concentration of EDTA is increased. Direct attacks of EDTA probably occurs giving Fe-transferrin (HCO3). EDTA as a transition state or intermediate. The factors which may lead to the observed pH dependence of the rate include (i) protonation of groups directly bound to the iron, (ii) conformers which differ in degree of protonation and (iii) the degree of protonation of the attacking chelating agent. It is suggested that an increase in conformational fluctuations as the pH is lowered may play a very important role. Studies with differrictransferrin at pH 4.53 and 7.40 showed that when iron is released to EDTA the rate is independent of the occupancy of the other site; that is, the two sites are exhibiting non-co-operativity.  相似文献   

13.
Oxidative damage, as indicated by protein carbonyl and lipid hydroperoxide concentrations, was assessed in the plasma of college-aged females with adequate iron status and with non-anemic iron deficiency before and after eight weeks of iron supplementation. At baseline, the mean serum ferritin, iron, transferrin saturation, and total iron binding capacity of the iron deficient group (n = 13) was significantly different from the iron adequate controls (n = 24). Mean plasma lipid hydroperoxide and protein carbonyl concentrations did not differ between groups at baseline. Following eight weeks of iron supplementation, the mean serum ferritin, iron, and transferrin saturation significantly increased and the total iron binding capacity significantly decreased in the iron deficient group. No significant differences in plasma lipid hydroperoxide or protein carbonyl concentrations were found between groups at the end of the study period. When plasma lipid hydroperoxide and protein carbonyl concentrations of subjects within groups were compared at the start versus at the end of the study, no significant differences were found for either group. Neither non-anemic iron deficiency nor its treatment with oral iron supplements is associated with oxidative damage in the plasma of college-aged females.  相似文献   

14.
The rate of release of iron to 1,10-phenanthroline from ferritin fractions of different iron contents has been studied. The experimental results could be interpreted by a simple hypothetical model of the shape of the hydrous ferric oxide micelle at different iron contents, and reasonable correlation obtained between the rate of release and the calculated micelle surface areas. Initial rates of release did not correlate significantly with protein concentration.  相似文献   

15.
Iron release from human, rabbit, rat and sheep transferrin, chicken conalbumin and human lactoferrin was measured by the change in absorbance of solutions of the iron-protein complexes or by the release of 59Fe from the protein conjugated to agarose. Several phosphatic compounds and iron chelators were able to mediate the process (ATP, GTP, 2,3-diphosphoglycerate, inositol hexaphosphate, pyridoxal 5-phosphate, cytidine 5-triphosphate, pyrophosphate, inorganic phosphate, citrate, EDTA, oxalate, nitrilotriacetate). The greatest rate of iron release was found with pyrophosphate and the least with inorganic phosphate. Different rates of iron release were obtained with the different proteins, greatest with human transferrin and least with lactoferrin. With each of the proteins and the mediators there was a linera relationship between the H+ concentration and the rate of iron release. At any given pH the rate of iron release increased to a maximal rate as the mediator concentration was raised. It is concluded that iron release from transferrin under the conditions of these experiments involves an initial interaction between H+ and the iron-transferrin complex followed by release of the iron under the action of the mediator.  相似文献   

16.
Haem binding to horse spleen ferritin and Pseudomonas aeruginosa bacterioferritin has been studied by spectroscopic methods. A maximum of 16 haems per ferritin molecule, and 24 haems per bacterioferritin molecule, has been shown to bind. The influence of the bound haem on the rate of reductive iron release has been investigated. With a range of reductants and in the absence of haem the rate of release varied with the reductant, but in the presence of haem the rate was both independent of the reductant and faster than with any of the reductants alone. This indicates the rate-limiting step for iron release in the absence of haem was electron-transfer across the protein shell. Based on the results obtained with the in vitro assay system and from a consideration of data currently in the literature, plausible schemes for ferritin and bacterioferritin iron uptake and release are described.  相似文献   

17.
Receptor mediated endocytosis has been proposed as the method of cellular iron uptake from transferrin (TF). However, the experimental evidence for endocytosis in every situation is found wanting. This is particularly true for the hepatocyte where an alternative mechanism of iron release at the cell surface can account for all iron uptake. It may be, that under appropriate physiological conditions (e.g. degree of iron saturation of TF) cells may take up iron by either an endocytotic or nonendocytotic mechanism.  相似文献   

18.
The mechanisms of neuroprotection induced by hypoxic preconditioning (HP) and the effects of HP on iron metabolism proteins in the brain have not been fully elucidated. Based on the accumulated information, we hypothesized that HP would be able to affect the expression of iron metabolism proteins in the brain and that the changes in the expression of these proteins induced by HP might be partly associated with the HP-induced neuroprotection. Here, we demonstrated for the first time that HP could induce a significant increase in the expression of HIF-1alpha as well as iron uptake (TfR1 and DMT1) and release (Fpn1) proteins and thus increase transferrin-bound iron (Tf-Fe) and non-transferrin-bound iron (NTBI) uptake and iron release, and also a progressive increase in cellular iron content in the cultured neurons. We concluded that HP has the ability to speed iron transport rate and proposed that the increase in iron transport rate and cellular iron in neurons might be one of the mechanisms involved in neuroprotection in the HP neurons. We also demonstrated that Fpn1 expression was significantly affected by HIF-1alpha, implying that the gene encoding this iron efflux protein is hypoxia-inducible.  相似文献   

19.
The kinetics of iron and copper binding to hen's-egg apo-ovotransferrin were studied by using citrate chelates of these metals at pH9.3 in borate buffer in the presence of bicarbonate. The kinetics of the absorbance change associated with the formation of the final product show a fast process, which is pseudo-first-order, where the reagents are in excess with respect to the protein, and the citrate concentration is higher than 25mM. At lower citrate concentration, the progress curves are clearly biphasic. There is marked dependence of the rate of the reaction on bicarbonate concentration, which may be interpreted as a displacement reaction of the ligand-metal-protein ternary complex. The kinetics have been interpreted in the framework of a reaction scheme which involves bimolecular reaction of a metal chelate to the protein and subsequent colour development by displacement of the chelator by bicarbonate. The pH-dependence of this reaction supports the belief that tyrosine residues are involved in the process of iron-binding. The overall similarity of kinetics for iron and copper binding, notwithstanding their different co-ordination preferences, suggests that the process of metal-binding or chromophore development for the two metal complexes must be similar.  相似文献   

20.
F J Carver  E Frieden 《Biochemistry》1978,17(1):167-172
The release of iron from transferrin was investigated by incubating the diferric protein in the presence of potential iron-releasing agents. The effective chemical group appears to be pyrophosphate, which is present in blood cells as nucleoside di- and triphosphates, notably adenosine triphosphate (ATP). An alternative structure with comparable activity is represented by 2,3-diphosphoglycerate. Neither 1 mM adenosine monophosphate (AMP) nor 1 mM orthophosphate released iron from transferrin. The ATP-induced iron-releasing activity was dependent on weak acidic conditions and was sensitive to temperature and sodium chloride concentration. The rate of iron release rapidly increased as transferrin was titrated with HCl from pH 6.8 to 6.1 in the presence of 1 mM ATP and 160 mM NaCl at 20 degrees C. Iron release from transferrin without ATP was observed below pH 5.5. Ascorbate (10(-4) M) reduced Fe(III), but only after iron release from transferrin by a physiological concentration of ATP. A proposal for the mechanism of iron release from transferrin by ATP and the utilization of reduced iron by erythroid cells is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号