首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deng H  Jia Y  Wei Y  Zhang Y 《Proteins》2012,80(9):2311-2322
Many statistical potentials were developed in last two decades for protein folding and protein structure recognition. The major difference of these potentials is on the selection of reference states to offset sampling bias. However, since these potentials used different databases and parameter cutoffs, it is difficult to judge what the best reference states are by examining the original programs. In this study, we aim to address this issue and evaluate the reference states by a unified database and programming environment. We constructed distance-specific atomic potentials using six widely-used reference states based on 1022 high-resolution protein structures, which are applied to rank modeling in six sets of structure decoys. The reference state on random-walk chain outperforms others in three decoy sets while those using ideal-gas, quasi-chemical approximation and averaging sample stand out in one set separately. Nevertheless, the performance of the potentials relies on the origin of decoy generations and no reference state can clearly outperform others in all decoy sets. Further analysis reveals that the statistical potentials have a contradiction between the universality and pertinence, and optimal reference states should be extracted based on specific application environments and decoy spaces.  相似文献   

2.
Accurate model evaluation is a crucial step in protein structure prediction. For this purpose, statistical potentials, which evaluate a model structure based on the observed atomic distance frequencies in comparison with those in reference states, have been widely used. The reference state is a virtual state where all of the atomic interactions are turned off, and it provides a standard to measure the observed frequencies. In this study, we examined seven all‐atom distance‐dependent potentials with different reference states. As results, we observed that the variations of atom pair composition and those of distance distributions in the reference states produced systematic changes in the hydrophobic and attractive characteristics of the potentials. The performance evaluations with the CASP7 structures indicated that the preference of hydrophobic interactions improved the correlation between the energy and the GDT‐TS score, but decreased the Z‐score of the native structure. The attractiveness of potential improved both the correlation and Z‐score for template‐based modeling targets, but the benefit was smaller in free modeling targets. These results indicated that the performances of the potentials were more strongly influenced by their characteristics than by the accuracy of the definitions of the reference states.  相似文献   

3.
Statistical potentials are frequently engaged in the protein structural prediction and protein folding for conformational evaluation. Theoretically, to describe the many‐body effect, pairwise interaction between two atom groups should be corrected by their relative geometric orientation. The potential functions developed by this means are called orientation‐dependent statistical potentials and have exhibited substantially improved performance. However, none of the currently available orientation‐dependent statistical potentials use any reference state, which has been proven to greatly enhance the power of distance‐dependent statistical potentials in numerous previous studies. In this work, we designed a reasonable reference state for the orientation‐dependent statistical potentials: using the average geometric relationship between atom pairs in known structures by neglecting their residue identities. The statistical potential developed using this reference state (called ORDER_AVE) prevails most available rival potentials in a series of tests on the decoy sets, although the information of side chain atoms (except the β‐carbon) is absent in its construction. Proteins 2014; 82:2383–2393. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Mooij WT  Verdonk ML 《Proteins》2005,61(2):272-287
We present a novel atom-atom potential derived from a database of protein-ligand complexes. First, we clarify the similarities and differences between two statistical potentials described in the literature, PMF and Drugscore. We highlight shortcomings caused by an important factor unaccounted for in their reference states, and describe a new potential, which we name the Astex Statistical Potential (ASP). ASP's reference state considers the difference in exposure of protein atom types towards ligand binding sites. We show that this new potential predicts binding affinities with an accuracy similar to that of Goldscore and Chemscore. We investigate the influence of the choice of reference state by constructing two additional statistical potentials that differ from ASP only in this respect. The reference states in these two potentials are defined along the lines of Drugscore and PMF. In docking experiments, the potential using the new reference state proposed for ASP gives better success rates than when these literature reference states were used; a success rate similar to the established scoring functions Goldscore and Chemscore is achieved with ASP. This is the case both for a large, general validation set of protein-ligand structures and for small test sets of actives against four pharmaceutically relevant targets. Virtual screening experiments for these targets show less discrimination between the different reference states in terms of enrichment. In addition, we describe how statistical potentials can be used in the construction of targeted scoring functions. Examples are given for cdk2, using four different targeted scoring functions, biased towards increasingly large target-specific databases. Using these targeted scoring functions, docking success rates as well as enrichments are significantly better than for the general ASP scoring function. Results improve with the number of structures used in the construction of the target scoring functions, thus illustrating that these targeted ASP potentials can be continuously improved as new structural data become available.  相似文献   

5.
Zhang C  Liu S  Zhou H  Zhou Y 《Biophysical journal》2004,86(6):3349-3358
An accurate statistical energy function that is suitable for the prediction of protein structures of all classes should be independent of the structural database used for energy extraction. Here, two high-resolution, low-sequence-identity structural databases of 333 alpha-proteins and 271 beta-proteins were built for examining the database dependence of three all-atom statistical energy functions. They are RAPDF (residue-specific all-atom conditional probability discriminatory function), atomic KBP (atomic knowledge-based potential), and DFIRE (statistical potential based on distance-scaled finite ideal-gas reference state). These energy functions differ in the reference states used for energy derivation. The energy functions extracted from the different structural databases are used to select native structures from multiple decoys of 64 alpha-proteins and 28 beta-proteins. The performance in native structure selections indicates that the DFIRE-based energy function is mostly independent of the structural database whereas RAPDF and KBP have a significant dependence. The construction of two additional structural databases of alpha/beta and alpha + beta-proteins further confirmed the weak dependence of DFIRE on the structural databases of various structural classes. The possible source for the difference between the three all-atom statistical energy functions is that the physical reference state of ideal gas used in the DFIRE-based energy function is least dependent on the structural database.  相似文献   

6.
Huang SY  Zou X 《Proteins》2011,79(9):2648-2661
In this study, we have developed a statistical mechanics-based iterative method to extract statistical atomic interaction potentials from known, nonredundant protein structures. Our method circumvents the long-standing reference state problem in deriving traditional knowledge-based scoring functions, by using rapid iterations through a physical, global convergence function. The rapid convergence of this physics-based method, unlike other parameter optimization methods, warrants the feasibility of deriving distance-dependent, all-atom statistical potentials to keep the scoring accuracy. The derived potentials, referred to as ITScore/Pro, have been validated using three diverse benchmarks: the high-resolution decoy set, the AMBER benchmark decoy set, and the CASP8 decoy set. Significant improvement in performance has been achieved. Finally, comparisons between the potentials of our model and potentials of a knowledge-based scoring function with a randomized reference state have revealed the reason for the better performance of our scoring function, which could provide useful insight into the development of other physical scoring functions. The potentials developed in this study are generally applicable for structural selection in protein structure prediction.  相似文献   

7.
Shirota M  Ishida T  Kinoshita K 《Proteins》2011,79(5):1550-1563
In protein structure prediction, it is crucial to evaluate the degree of native-likeness of given model structures. Statistical potentials extracted from protein structure data sets are widely used for such quality assessment problems, but they are only applicable for comparing different models of the same protein. Although various other methods, such as machine learning approaches, were developed to predict the absolute similarity of model structures to the native ones, they required a set of decoy structures in addition to the model structures. In this paper, we tried to reformulate the statistical potentials as absolute quality scores, without using the information from decoy structures. For this purpose, we regarded the native state and the reference state, which are necessary components of statistical potentials, as the good and bad standard states, respectively, and first showed that the statistical potentials can be regarded as the state functions, which relate a model structure to the native and reference states. Then, we proposed a standardized measure of protein structure, called native-likeness, by interpolating the score of a model structure between the native and reference state scores defined for each protein. The native-likeness correlated with the similarity to the native structures and discriminated the native structures from the models, with better accuracy than the raw score. Our results show that statistical potentials can quantify the native-like properties of protein structures, if they fully utilize the statistical information obtained from the data set.  相似文献   

8.
We developed a series of statistical potentials to recognize the native protein from decoys, particularly when using only a reduced representation in which each side chain is treated as a single C(beta) atom. Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy function (DOPE), we considered the implications of including additional information in the all-atom statistical potential and subsequently reducing to the C(beta) representation. One of the potentials includes interaction energies conditional on backbone geometries. A second potential separates sequence local from sequence nonlocal interactions and introduces a novel reference state for the sequence local interactions. The resultant potentials perform better than the original DOPE statistical potential in decoy identification. Moreover, even upon passing to a reduced C(beta) representation, these statistical potentials outscore the original (all-atom) DOPE potential in identifying native states for sets of decoys. Interestingly, the backbone-dependent statistical potential is shown to retain nearly all of the information content of the all-atom representation in the C(beta) representation. In addition, these new statistical potentials are combined with existing potentials to model hydrogen bonding, torsion energies, and solvation energies to produce even better performing potentials. The ability of the C(beta) statistical potentials to accurately represent protein interactions bodes well for computational efficiency in protein folding calculations using reduced backbone representations, while the extensions to DOPE illustrate general principles for improving knowledge-based potentials.  相似文献   

9.
We propose a self-consistent approach to analyze knowledge-based atom-atom potentials used to calculate protein-ligand binding energies. Ligands complexed to actual protein structures were first built using the SMoG growth procedure (DeWitte & Shakhnovich, 1996) with a chosen input potential. These model protein-ligand complexes were used to construct databases from which knowledge-based protein-ligand potentials were derived. We then tested several different modifications to such potentials and evaluated their performance on their ability to reconstruct the input potential using the statistical information available from a database composed of model complexes. Our data indicate that the most significant improvement resulted from properly accounting for the following key issues when estimating the reference state: (1) the presence of significant nonenergetic effects that influence the contact frequencies and (2) the presence of correlations in contact patterns due to chemical structure. The most successful procedure was applied to derive an atom-atom potential for real protein-ligand complexes. Despite the simplicity of the model (pairwise contact potential with a single interaction distance), the derived binding free energies showed a statistically significant correlation (approximately 0.65) with experimental binding scores for a diverse set of complexes.  相似文献   

10.
Zhang J  Zhang Y 《PloS one》2010,5(10):e15386

Background

An accurate potential function is essential to attack protein folding and structure prediction problems. The key to developing efficient knowledge-based potential functions is to design reference states that can appropriately counteract generic interactions. The reference states of many knowledge-based distance-dependent atomic potential functions were derived from non-interacting particles such as ideal gas, however, which ignored the inherent sequence connectivity and entropic elasticity of proteins.

Methodology

We developed a new pair-wise distance-dependent, atomic statistical potential function (RW), using an ideal random-walk chain as reference state, which was optimized on CASP models and then benchmarked on nine structural decoy sets. Second, we incorporated a new side-chain orientation-dependent energy term into RW (RWplus) and found that the side-chain packing orientation specificity can further improve the decoy recognition ability of the statistical potential.

Significance

RW and RWplus demonstrate a significantly better ability than the best performing pair-wise distance-dependent atomic potential functions in both native and near-native model selections. It has higher energy-RMSD and energy-TM-score correlations compared with other potentials of the same type in real-life structure assembly decoys. When benchmarked with a comprehensive list of publicly available potentials, RW and RWplus shows comparable performance to the state-of-the-art scoring functions, including those combining terms from multiple resources. These data demonstrate the usefulness of random-walk chain as reference states which correctly account for sequence connectivity and entropic elasticity of proteins. It shows potential usefulness in structure recognition and protein folding simulations. The RW and RWplus potentials, as well as the newly generated I-TASSER decoys, are freely available in http://zhanglab.ccmb.med.umich.edu/RW.  相似文献   

11.
Distance-dependent statistical potentials are an important class of energy functions extensively used in modeling protein structures and energetics. These potentials are obtained by statistically analyzing the proximity of atoms in all combinatorial amino-acid pairs in proteins with known structures. In model evaluation, the statistical potential is usually subtracted by the value of a reference state for better selectivity. An ideal reference state should include the general chemical properties of polypeptide chains so that only the unique factors stabilizing the native structures are retained after calibrating on reference state. However, reference states available as of this writing rarely model specific chemical constraints of peptide bonds and therefore poorly reflect the behavior of polypeptide chains. In this work, we proposed a statistical potential based on unfolded state ensemble (SPOUSE), where the reference state is summarized from the unfolded state ensembles of proteins produced according to the statistical coil model. Due to its better representation of the features of polypeptides, SPOUSE outperforms three of the most widely used distance-dependent potentials not only in native conformation identification, but also in the selection of close-to-native models and correlation coefficients between energy and model error. Furthermore, SPOUSE shows promising possibility of further improvement by integration with the orientation-dependent side-chain potentials.  相似文献   

12.
Many existing derivations of knowledge-based statistical pair potentials invoke the quasichemical approximation to estimate the expected side-chain contact frequency if there were no amino acid pair-specific interactions. At first glance, the quasichemical approximation that treats the residues in a protein as being disconnected and expresses the side-chain contact probability as being proportional to the product of the mole fractions of the pair of residues would appear to be rather severe. To investigate the validity of this approximation, we introduce two new reference states in which no specific pair interactions between amino acids are allowed, but in which the connectivity of the protein chain is retained. The first estimates the expected number of side-chain contracts by treating the protein as a Gaussian random coil polymer. The second, more realistic reference state includes the effects of chain connectivity, secondary structure, and chain compactness by estimating the expected side-chain contrast probability by placing the sequence of interest in each member of a library of structures of comparable compactness to the native conformation. The side-chain contact maps are not allowed to readjust to the sequence of interest, i.e., the side chains cannot repack. This situation would hold rigorously if all amino acids were the same size. Both reference states effectively permit the factorization of the side-chain contact probability into sequence-dependent and structure-dependent terms. Then, because the sequence distribution of amino acids in proteins is random, the quasichemical approximation to each of these reference states is shown to be excellent. Thus, the range of validity of the quasichemical approximation is determined by the magnitude of the side-chain repacking term, which is, at present, unknown. Finally, the performance of these two sets of pair interaction potentials as well as side-chain contact fraction-based interaction scales is assessed by inverse folding tests both without and with allowing for gaps.  相似文献   

13.
Key to successful protein structure prediction is a potential that recognizes the native state from misfolded structures. Recent advances in empirical potentials based on known protein structures include improved reference states for assessing random interactions, sidechain-orientation-dependent pair potentials, potentials for describing secondary or supersecondary structural preferences and, most importantly, optimization protocols that sculpt the energy landscape to enhance the correlation between native-like features and the energy. Improved clustering algorithms that select native-like structures on the basis of cluster density also resulted in greater prediction accuracy. For template-based modeling, these advances allowed improvement in predicted structures relative to their initial template alignments over a wide range of target-template homology. This represents significant progress and suggests applications to proteome-scale structure prediction.  相似文献   

14.

Background

Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures.

Results

In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named “rotamer-dependent atomic statistical potential” (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality.

Conclusions

A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-307) contains supplementary material, which is available to authorized users.  相似文献   

15.
Rykunov D  Fiser A 《Proteins》2007,67(3):559-568
Statistical distance dependent pair potentials are frequently used in a variety of folding, threading, and modeling studies of proteins. The applicability of these types of potentials is tightly connected to the reliability of statistical observations. We explored the possible origin and extent of false positive signals in statistical potentials by analyzing their distance dependence in a variety of randomized protein-like models. While on average potentials derived from such models are expected to equal zero at any distance, we demonstrate that systematic and significant distortions exist. These distortions originate from the limited statistical counts in local environments of proteins and from the limited size of protein structures at large distances. We suggest that these systematic errors in statistical potentials are connected to the dependence of amino acid composition on protein size and to variation in protein sizes. Additionally, atom-based potentials are dominated by a false positive signal that is due to correlation among distances measured from atoms of one residue to atoms of another residue. The significance of residue-based pairwise potentials at various spatial pair separations was assessed in this study and it was found that as few as approximately 50% of potential values were statistically significant at distances below 4 A, and only at most approximately 80% of them were significant at larger pair separations. A new definition for reference state, free of the observed systematic errors, is suggested. It has been demonstrated to generate statistical potentials that compare favorably to other publicly available ones.  相似文献   

16.
Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge-based potentials based on pairwise distances--so-called "potentials of mean force" (PMFs)--have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state--a necessary component of these potentials--is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities "reference ratio distributions" deriving from the application of the "reference ratio method." This new view is not only of theoretical relevance but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures.  相似文献   

17.
A long standing goal in protein structure studies is the development of reliable energy functions that can be used both to verify protein models derived from experimental constraints as well as for theoretical protein folding and inverse folding computer experiments. In that respect, knowledge-based statistical pair potentials have attracted considerable interests recently mainly because they include the essential features of protein structures as well as solvent effects at a low computing cost. However, the basis on which statistical potentials are derived have been questioned. In this paper, we investigate statistical pair potentials derived from protein three-dimensional structures, addressing in particular questions related to the form of these potentials, as well as to the content of the database from which they are derived. We have shown that statistical pair potentials depend on the size of the proteins included in the database, and that this dependence can be reduced by considering only pairs of residue close in space (i.e., with a cutoff of 8 Å). We have shown also that statistical potentials carry a memory of the quality of the database in terms of the amount and diversity of secondary structure it contains. We find, for example, that potentials derived from a database containing α-proteins will only perform best on α-proteins in fold recognition computer experiments. We believe that this is an overall weakness of these potentials, which must be kept in mind when constructing a database. Proteins 31:139–149, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Gilis D  Rooman M 《Proteins》2001,42(2):164-176
The location of protein subunits that form early during folding, constituted of consecutive secondary structure elements with some intrinsic stability and favorable tertiary interactions, is predicted using a combination of threading algorithms and local structure prediction methods. Two folding units are selected among the candidates identified in a database of known protein structures: the fragment 15-55 of 434 cro, an all-alpha protein, and the fragment 1-35 of ubiquitin, an alpha/beta protein. These units are further analyzed by means of Monte Carlo simulated annealing using several database-derived potentials describing different types of interactions. Our results suggest that the local interactions along the chain dominate in the first folding steps of both fragments, and that the formation of some of the secondary structures necessarily occurs before structure compaction. These findings led us to define a prediction protocol, which is efficient to improve the accuracy of the predicted structures. It involves a first simulation with a local interaction potential only, whose final conformation is used as a starting structure of a second simulation that uses a combination of local interaction and distance potentials. The root mean square deviations between the coordinates of predicted and native structures are as low as 2-4 A in most trials. The possibility of extending this protocol to the prediction of full proteins is discussed. Proteins 2001;42:164-176.  相似文献   

19.
The distance-dependent structure-derived potentials developed so far all employed a reference state that can be characterized as a residue (atom)-averaged state. Here, we establish a new reference state called the distance-scaled, finite ideal-gas reference (DFIRE) state. The reference state is used to construct a residue-specific all-atom potential of mean force from a database of 1011 nonhomologous (less than 30% homology) protein structures with resolution less than 2 A. The new all-atom potential recognizes more native proteins from 32 multiple decoy sets, and raises an average Z-score by 1.4 units more than two previously developed, residue-specific, all-atom knowledge-based potentials. When only backbone and C(beta) atoms are used in scoring, the performance of the DFIRE-based potential, although is worse than that of the all-atom version, is comparable to those of the previously developed potentials on the all-atom level. In addition, the DFIRE-based all-atom potential provides the most accurate prediction of the stabilities of 895 mutants among three knowledge-based all-atom potentials. Comparison with several physical-based potentials is made.  相似文献   

20.
Chiu TL  Goldstein RA 《Proteins》2000,41(2):157-163
Success in the protein structure prediction problem relies heavily on the choice of an appropriate potential function. One approach toward extracting these potentials from a database of known protein structures is to maximize the Z-score of the database proteins, which represents the ability of the potential to discriminate correct from random conformations. These optimization methods model the entire distribution of alternative structures, reducing their ability to concentrate on the lowest energy structures most competitive with the native state and resulting in an unfortunate tendency to underestimate the repulsive interactions. This leads to reduced accuracy and predictive ability. Using a lattice model, we demonstrate how we can weight the distribution to suppress the contributions of the high-energy conformations to the Z-score calculation. The result is a potential that is more accurate and more likely to yield correct predictions than other Z-score optimization methods as well as potentials of mean force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号