首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term synaptic depression mainly reflects the depletion of the readily releasable pool (RRP) of quanta. Its dynamics, and especially the replenishment rate of the RRP, are still not well characterized in spite of decades of investigation. Main reason is that the vesicular storage and release system is treated as time-independent. If it is time-dependent all parameters thus estimated become problematic. Indeed the reports about how prolonged stimulation affects the dynamics are contradictory. To study this, we used patterned stimulation on the Schaeffer collateral fiber pathway and model-fitting of the excitatory post-synaptic currents (EPSC) recorded from CA1 neurons in rat hippocampal slices. The parameters of a vesicular storage and release model with two pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. This yields the ‘basic’ parameters (release coupling, replenishment coupling and RRP size) that underlie the ‘derived’ and commonly used parameters (fractional release and replenishment rate). The fractional release increases when [Ca++]o is raised, whereas the replenishment rate is [Ca++]o independent. Fractional release rises because release coupling increases, and the RRP becomes less able to contain quanta. During prolonged stimulation, the fractional release remains generally unaltered, whereas the replenishment rate decreases down to ~10 % of its initial value with a decay time of ~15 s, and this decrease in the replenishment rate significantly contributes to synaptic depression. In conclusion, the fractional release is [Ca++]o-dependent and stimulation-independent, whereas the replenishment rate is [Ca++]o-independent and stimulation-dependent.  相似文献   

2.
At the excitatory synapse of rat hippocampus the short-term synaptic depression observed during long high-frequency stimulation is associated with slower replenishment of the readily-releasable pool. Given that the replenishment rate is also not [Ca++]o sensitive this puts into question a widely held notion that the vesicles—constrained by the cytoskeleton and rendered free from such constraints by Ca++ entry that renders them more mobile—are important in the replenishment of the readily-releasable pool. This raises a question—Is vesicular replenishment of the readily releasable pool associated with significant movement? To answer this question we evaluated how okadaic acid and staurosporine (compounds known to affect vesicular mobility) influence the replenishment rate. We used patterned stimulation on the Schaffer collateral fiber pathway and recorded the excitatory post-synaptic currents (EPSCs) from rat CA1 neurons, in the absence and presence of these drugs. The parameters of a circuit model with two vesicular pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. [Ca2+]o did not influence the progressive decrease of the replenishment rate during long, high frequency stimulation. Okadaic acid did not significantly affect any parameters of the vesicular storage and release system, including the replenishment rate. Staurosporine reduced the replenishment coupling, but not the replenishment rate, and this is owing to the fact that it also reduces the ability of the readily releasable pool to contain quanta. Moreover, these compounds were ineffective in influencing how the replenishment rate decreases during long, high frequency stimulation. In conclusion at the excitatory synapses of rat hippocampus the replenishment of the readily releasable pool does not appear to be associated with a significant vesicular movement, and during long high frequency stimulation [Ca++]o does not influence the progressive decrease of vesicular replenishment.  相似文献   

3.
The effect of external calcium and of temperature on the contractile responses has been studied in voltage clamped snake twitch muscle fibers. Increasing [Ca++]o from 0.2 to 7.0 mM raised contractile threshold by 15–20 mV, the latter coinciding with the appearance of delayed rectification. The duration of contracture, the rates of rise and decay of tension depended on the level of depolarization and [Ca++]o. The minimum duration of repolarization necessary to restore the contractile response was much shorter in high [Ca++]o. When the bathing solution was cooled to 10 from 20°C the time-course of contracture was markedly prolonged and the outward current was reduced without significant change in maximum tension. The threshold for contraction tended to be somewhat lower at the lower temperature. The contractile repriming was much slower at low temperature. However, reduction in temperature slowed the rate of recovery much less at low [Ca++]o than at normal [Ca++]o.  相似文献   

4.
The times required for a steady rate of miniature end-plate potential discharge to be reached in response to changes in extracellular [K+], [Na+], and [Ca++] have been measured. In the presence of 15 mM KCl, Ca++ raises and Na+ lowers the steady-state mepp frequency; but the depressive effect on Na+ is not specific: Li+ can replace Na+ to a large extent. Mepp frequency has been found to depend on the ratio of [Cao ++]/[Nao +]. It is assumed that in the steady state, intracellular sodium will change when extracellular sodium is changed. Because both intracellular and extracellular sodium at motor nerve endings affect acetylcholine release, it is proposed that mepp frequency depends on the ratio [Cao] [Nai]2·/[Nao]2 Two models are proposed. Firstly, to account for the action of sodium and calcium a carrier is postulated for which Ca++ and Na+ compete. The carrier determines a maximum level of intracellular Ca++ far lower than predicted by the Nernst equation for Ca. Secondly, to account for activation of acetylcholine release by a small influx of Ca++, the ions are presumed to enter the nerve ending in a two stage process through a small intermediate compartment and to act on the acetylcholine release site in this region rather than after entering directly into the cell.  相似文献   

5.
Summary The passive Ca efflux from human red cell ghosts was studied in media of differing ion compositions and compared to the ATP-dependent Ca efflux. Cells were loaded with45Ca during reversible hemolysis, and the loss of radioactivity into the non-radioactive incubation medium was measured, usually for 3 hr at 37°C. Analysis of the efflux curves revealed that45Ca efflux followed the kinetics of a simple two-compartment system. In the concentration range between 0 and 1mm Ca in the external solution ([Ca++] o ), the rate constant of passive Ca efflux (k min–1, fraction of45Ca lost per minute into the medium) increased from 0.00732 to 0.0150 min–1. There was no further increase at higher [Ca++] o . The relation between the rate constant of Ca efflux and [Ca++] o is thus characterized by saturation kinetics. The passive transfer system for Ca could also be activated by Sr. The alkali metal ions Na, K and Li did not seem to have any significant influence on passive Ca transfer. The passive Ca efflux was slightly inhibited by Mg and strongly inhibited by Pb. Under most experimental conditions, a fraction of 15 to 50% of the intracellular Ca seemed to be inexchangeable. The inexchangeable fraction decreased with increasing [Ca++] o and increased with increasing [Ca++] i . It was not influenced by alkali metal ions, CN or Pb, but it could be completely removed from the cells by the addition of 0.1mm Mersalyl to the incubation medium or by hemolysis with addition of a detergent. The active ATP-dependent Ca transport differed characteristically from passive transfer; the rate constant decreased with increasing [Ca++] o , and the inexchangeable Ca fraction increased with increasing [Ca++] o . The experimental results suggest that there exists a carrier-mediated Ca–Ca exchange diffusion in the erythrocyte membrane and that only a fraction of the ghost cell population participates in the Ca exchange diffusion.  相似文献   

6.
During intracellular iontophoretic injection of Ca++ into Limulus ventral photoreceptor cells, there is a progressive diminution of the light response. Following Ca++ injection, the size of the light response slowly recovers. Similarly, there is a progressive diminution of the light response during intracellular injection of Na+ and recovery after the injection is stopped. The rate of diminution during Na+ injection is greater for higher [Ca++]out. In solutions which contain 0.1 mM Ca++, there is nearly no progressive decrease in the size of the light response during Na+ injection. Intracellular injections of Li+ or K+ do not progressively decrease the size of the light response. We propose that an increase in [Na+]in leads to an increase in [Ca++]in and that an increase in [Ca++]in by any means leads to a reduction in responsiveness to light.  相似文献   

7.
We studied the characteristics of short-term plasticity in inhibitory synapses of cultured neurons of the rat hippocampus. In our experiments, we used techniques of voltage clamp in the whole-cell configuration and of local electrical stimulation (pairs of stimuli were applied to a single synaptic terminal of the GABA-ergic neuron under conditions of the blockade of spreading excitation). We demonstrated that an increase or a decrease in the extracellular concentration of calcium ions ([Ca2+]o) results in modifications of the pattern of this plasticity. Depression of the second postsynaptic response under conditions of normal [Ca2+]o was characterized by a paired-pulse ratio (PPR) equal, on average, to 0.78 ± 0.04 (n = 5). With a decrease in the [Ca2+]o to 0.5 mM, depression was changed to facilitation (PPR = 1.17 ± 0.08, n = 5), while with a rise in the [Ca2+]o to 5.0 mM, depression became more clearly pronounced (PPR = 0.48 ± 0.03, n = 5). Alterations of responses, which were determined by a decrease or an increase in the [Ca2+]o, differed significantly from those related to a decrease or an increase in the amplitude of presynaptic stimulation. Analysis of the parameters of the pairs of evoked inhibitory postsynaptic currents under conditions of various [Ca2+]o and different intensities of stimulation of the presynaptic terminal allows us to conclude that in these terminals calcium-dependent (and, probably, also voltage-dependent) mechanisms underlying control of short-term synaptic plasticity are present. Neirofiziologiya/Neurophysiology, Vol. 38, No. 2, pp. 103–112, March–April, 2006.  相似文献   

8.
The effect of morphine on ATPase of synaptic plasma membranes (SPM) and synaptic vesicles isolated from the mouse brain was studied. The activity of synaptic vesicle Mg++-dependent ATPase from mice rendered morphine tolerant and dependent by pellet implantation was 40% higher than that from placebo implanted mice. However, the activities of Mg++-dependent ATPase and Na+, K+ activated ATPase of SPM of tolerant and nontolerant mice were not significantly different. The activity of synaptic vesicular Mg++-dependet ATPase was dependent on the concentration of Mg++ but not of Ca++; maximum activity was obtained with 2 mM MgCl2. On the other hand, Mg++-dependent ATPase activity of SPM was dependent on both Mg++ and Ca++, activity being maximum using 2 mM MgCl2 and 10?5 M CaCl2. It is suggested that this stimulation of ATPase activity may alter synaptic transmission and may thus be involved in some aspects of morphine tolerance and dependence.  相似文献   

9.
1. When the Ringer''s solution applied to isolated frog sciatic nerve contains K+ in concentrations greater than 2 x standard, the height of the spike and of the after-potential is decreased, as is the duration of the after-potential; recovery of height and of excitability following response is delayed; degree and duration of supernormal excitability are decreased; postcathodal depression and postanodal enhancement are increased and prolonged. 2. The nerve functions just listed in general all change in the opposite direction when exposed'' to increased environmental [Ca++]. (4.5–20 x standard) or decreased [K+] (0.05–0.2 x standard). The effects of decreased [Ca++] (0.20–0.25 x standard) are indeterminate. 3. When [K+] and [Ca++] are both greater than 2 x standard, whatever the ratio between the concentrations the effects characteristic of high [K+] eventually predominate. However, these effects, except for those involving spike height, are preceded by effects characteristic of high [Ca++] when this cation is present in sufficient excess. 4. When [K+] and [Ca++] are reduced to equal low levels (0.1–0.2 x standard), effects characteristic of low [K+] and high [Ca++] are obtained. 5. The experimentally determined order of ability of the environments to produce changes characteristic of high K+ (which is the reverse of the order of their ability to produce changes characteristic of high [Ca++]), is not the order of their K+ or Ca++ concentrations, nor of the ratio between these concentrations (Table II). 6. The results may be explained by the assumption that the functions investigated are all to greater or less degree controlled by (1) the [K+]/[Ca++] ratio and (2) the K+ concentration, at least when this exceeds a critical level. Control by [K+] is more effective for spike height and its recovery after stimulation than for the other functions. The special rôle of K+ is attributed to an unknown specific effect of this ion which Ca++ is unable to oppose. It is suggested that this K+ effect in general becomes marked on the frog nerve functions investigated when the K+ concentration is somewhat above 2 x standard, while the [K+]/[Ca++] ratio must be changed by a factor of 4 or more before it exerts a definite effect on these functions. 7. In standard and in modified cationic environments, nerve functions vary in the ease with which they manifest changes characteristic of high [K+] or of high [Ca++]. 8. The after-potential functions are less completely controlled by the cationic environment than are the other functions investigated.  相似文献   

10.
Correlation of the localization of La+++ with its effects on Ca++ exchange in cultured rat heart cells is examined with the use of a recently developed technique. 75% of cellular Ca++ is exchangeable and is completely accounted for by two kinetically defined phases. The rapidly exchangeable phase has a t ½ = 1.15 min and accounts for 1 1 mmoles Ca++/kg wet cells or 43% of the exchangeable Ca++ (cells perfused with [Ca++]o = 1 mM) Phase 2 has a t ½ = 19.2 min and accounts for 1.5 mmoles Ca++/kg wet cells or 57% of the exchangeable Ca++. 0.5 mM [La+++]o displaces 0 52 mmoles Ca++/kg wet cells—all from phase 1—and almost completely abolishes subsequent Ca++ influx and efflux The presence of La+++ in the washout converts the washout pattern to a single phase system with a t ½ = 124 min. The effects upon Ca++ exchange are coincident with abolition of contractile tension but regenerative depolarization of the tissue is maintained Electron microscope localization of the La+++ places it exclusively in the external lamina or basement membrane of the cells. The study indicates that negatively charged sites in the basement membrane play a crucial role in the E-C coupling process in heart muscle  相似文献   

11.
Human polymorphonuclear leukocytes (PMNs) express β1 integrins that mediate adhesion to extracellular matrix proteins following stimulation with agonists that induce an increase in intracellular calcium. The purpose of these studies was to determine the contribution made by alterations in intracellular calcium ([Ca++]i) to inside-out activation of β1 integrins using dimethyl sulfoxide (DMSO)-differentiated granulocytic HL60 cells as a model of human PMNs. Activation of β1 integrins was determined by measuring the expression of an activation-dependent epitope on the β1 subunit that is recognized by monoclonal antibody (mAb) 15/7. Exposure of granulocytic HL60 cells to calcium ionophore ionomycin (800 nM) alone did not increase the binding of mAb 15/7 to the cell surface, nor did it increase β1 integrin-mediated adhesion of the cells to fibronectin. Similarly, exposure of the cells to the direct protein kinase C (PKC) activator, dioctanoylglycerol (di-C8) at 100 μM, neither increased binding of mAb 15/7 to these cells nor adhesion to fibronectin. Simultaneous addition of di-C8 and ionomycin, however, caused a significant increase in the expression of the 15/7 epitope and cell adhesion, suggesting synergy between elevating [Ca++]i and stimulating PKC in β1 integrin activation. Chelation of [Ca++]i with Quin-2 and EGTA reduced both basal (unstimulated) expression of the 15/7 epitope and basal adhesion of granulocytic HL60 cells to fibronectin. In addition, chelation of [Ca++]i caused a significant decrease in 15/7 binding and adhesion stimulated by low (1 ng/ml) concentrations of phorbol myristate acetate (PMA). The inhibitory effect of [Ca++]i chelation on β1 integrin activation was reversed by repleting [Ca++]i with ionomycin in a Ca++-containing buffer, or by the addition of higher concentrations of PMA (10 ng/ml). These data suggest a role for [Ca++]i in inside-out activation of β1 integrins, probably through a synergistic effect with PKC activation. J. Cell. Physiol. 175:193–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
  • 1.1. The effects of pressure on synaptic currents were examined in crayfish abdominal muscles.
  • 2.2. Helium pressure (10.1 MPa) considerably decreased extracellulariy-recorded excitatory junctional potentials associated with increased short-term facilitation.
  • 3.3. These effects could be mimicked by a reduction of [Ca2+]o, and partially compensated by an increase in [Ca2+]o.
  • 4.4. Pressure also reduced the amplitude of the extracellular nerve terminal potentials (ENTP) by up to 25%, and significantly increased synaptic delay in a [Ca2+]o-dependent manner.
  • 5.5. The interaction between compression and various [Ca2+]o were analysed in terms of an existing model of transmitter release. The results were consistent with the hypothesis that high pressure decreases the maximal Ca2+ influx into nerve terminals.
  • 6.6. The decreased ENTP and increased synaptic delay suggest that additional processes may be involved in pressure effects on synaptic transmission.
  相似文献   

13.
The present study aimed to characterize the role of protein kinase C (PKC) on the dynamics of tight junction (TJ) opening and closing in the frog urinary bladder. The early events of TJ dynamics were evaluated by the fast Ca++ switch assay (FCSA), which consisted in opening the TJs by removing basolateral Ca++ ([Ca++] bl ), and closing them by returning [Ca++] bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the appraisal of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in an FCSA were shown to follow single exponential time courses. PKC inhibition by H7 (100 μm) caused a reduction of the rate of junction opening in response to removing [Ca++] bl , without affecting junction closing, indicating that PKC is a key element in the control of TJ opening dynamics in this preparation. H7 at 250 μm almost completely inhibits TJ opening in response to basolateral Ca++ withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase which, however, once started cannot be stopped by H7 reintroduction, Ca++ being necessary to allow TJ recovery. A step rise of apical Ca++ concentration ([Ca++] ap ) causes a reduction of the rate of TJ opening in a FCSA, an effect that is believed to be mediated by apical Ca++ entering the open TJs. The specific condition of having Ca++ only in the apical solution and the TJs located midway between the Ca++ source (apical solution) and the Ca++-binding sites presumably located at the zonula adhaerens, might configure a situation in which a control feedback loop is set up. A rise of [Ca++] ap during the phase of G increase in an FCSA causes a transient recovery of G followed by a subsequent escape phase where G increases again. Oscillations of G also appear in response to a rise of apical Ca++. Both escape and oscillations result from the properties of the TJ regulatory feedback loop. In conclusion, the present results indicate that PKC plays a key role in TJ opening in response to extracellular Ca++ withdrawal without major effect on the reverse process. In addition, PKC inhibition by H7 not only prevents TJ opening in response to basolateral Ca++ removal but induces a prompt blockade of TJ oscillations induced by apical Ca++, oscillations which reappear again when H7 is removed. Received: 9 May 2000/Revised: 30 August 2000  相似文献   

14.
We performed experiments to elucidate the calcium influx pathways in freshly dispersed rabbit corneal epithelial cells. Three possible pathways were considered: voltage-gated Ca++ channels, Na+/Ca++ exchange, and nonvoltage-dependent Ca++-permeable channels. Whole cell inward currents carrying either Ca++ or Ba++ were not detected using voltage clamp techniques. We also used imaging technology and the Ca++-sensitive ratiometric dye fura 2 to measure changes in intracellular Ca++ concentration ([Ca]i). Bath perfusion with NaCl Ringer's solution containing the calcium channel agonist Bay-K-8644 (1 m), or Ni++ (40 m), a blocker of many voltage-dependent calcium channels, did not affect [Ca++]i. Membrane depolarization with a KCl Ringer's bath solution resulted in a decrease in [Ca++]i. These results are inconsistent with the presence of voltage gated Ca++ channels. Nonvoltage gated Ca++ entry, on the other hand, would be reduced by membrane depolarization and enhanced by membrane hyperpolarization. Agents which hyperpolarize via stimulation of K+ current, such as flufenamic acid, resulted in an increase in ratio intensity. The cells were found to be permeable to Mn++ and bath perfusion with 5 mm Ni++ decreased [Ca++]i suggesting that the Ca++ conductance was blocked. These results are most consistent with a nonvoltage gated Ca++ influx pathway. Finally, replacing extracellular Na+ with Li+ resulted in an increase in [Ca++]i if the cells were first Na+-loaded using the Na+ ionophore monensin and ouabain, a Na+-K+-ATPase inhibitor. These results suggest that Na+/Ca++ exchange may also regulate [Ca++] in this cell type.The authors are grateful to Chris Bartling for expert technical assistance with the imaging experiments, Helen Hendrickson for cell preparation, and Jonathon Monck for helpful discussions regarding imaging technology. This work was supported by National Institutes of Health grants EYO3282, EYO6005, DK08677, and an unrestricted award from Research to Prevent Blindness.  相似文献   

15.

Background

Nerve terminal invasion by an axonal spike activates voltage-gated channels, triggering calcium entry, vesicle fusion, and release of neurotransmitter. Ion channels activated at the terminal shape the presynaptic spike and so regulate the magnitude and duration of calcium entry. Consequently characterization of the functional properties of ion channels at nerve terminals is crucial to understand the regulation of transmitter release. Direct recordings from small neocortical nerve terminals have revealed that external [Ca2+] ([Ca2+]o) indirectly regulates a non-selective cation channel (NSCC) in neocortical nerve terminals via an unknown [Ca2+]o sensor. Here, we identify the first component in a presynaptic calcium signaling pathway.

Methodology/Principal Findings

By combining genetic and pharmacological approaches with direct patch-clamp recordings from small acutely isolated neocortical nerve terminals we identify the extracellular calcium sensor. Our results show that the calcium-sensing receptor (CaSR), a previously identified G-protein coupled receptor that is the mainstay in serum calcium homeostasis, is the extracellular calcium sensor in these acutely dissociated nerve terminals. The NSCC currents from reduced function mutant CaSR mice were less sensitive to changes in [Ca2+]o than wild-type. Calindol, an allosteric CaSR agonist, reduced NSCC currents in direct terminal recordings in a dose-dependent and reversible manner. In contrast, glutamate and GABA did not affect the NSCC currents.

Conclusions/Significance

Our experiments identify CaSR as the first component in the [Ca2+]o sensor-NSCC signaling pathway in neocortical terminals. Decreases in [Ca2+]o will depress synaptic transmission because of the exquisite sensitivity of transmitter release to [Ca2+]o following its entry via voltage-activated Ca2+ channels. CaSR may detects such falls in [Ca2+]o and increase action potential duration by increasing NSCC activity, thereby attenuating the impact of decreases in [Ca2+]o on release probability. CaSR is positioned to detect the dynamic changes of [Ca2+]o and provide presynaptic feedback that will alter brain excitability.  相似文献   

16.
Electropotential differences between the cytoplasm and external medium have been compared in the mature R. pipiens occyte and the ovulated unfertilized egg as a function of [Na]o, [K]o, [Ca]o and [Cl]o. In solutions containing 1.0 mM Ca++ the oocyte behaved as though it were predominantly permeable to K+ and Cl?, i.e., like a KCl electrode. However, the steady potential decreased with decreasing [Ca]o and in 5 × 10?4 mM [Ca]o the oocyte membrane behaved like a NaCl electrode. Studies on the steady potential as a function of [Na]o, [K]o and [Cl]o in 1.0 mM Ca++ or Ca-free solutions suggest that Ca++ controls the passive permeability of the oocyte membrane to Na+ and Cl?. In the ovulated unfertilized egg the K+ selectivity of the cell membrane disappeared and the system behaved like a NaCl electrode. No effect of external Ca++ or K+ concentration changes on the steady potential was observed. These results indicate that the ion permeability properties of the ovulated egg are similar to that of the ovarian oocyte in Ca-deficient medium, and suggests that the mechanism of ovulation may involve the removal of Ca++ regulation of ion permeability of the egg cell membrane.  相似文献   

17.
Two complementary experimental methods have been used to examine mitogen-induced transmembrane conductances in human B cells using the Daudi cell line as a model for human B cell activation. Spectrofluorometry was used to investigate mitogen-induced changes in [Ca++]i and transmembrane potential. Activation of human B cells with anti-μ antibodies resulted in a biphasic rise in [Ca++]i, the second phase being mediated by the influx of extracellular Ca++. Ca++ influx was inhibited by high [K+]e, suggesting that this influx was transmembrane potential sensitive. Membrane currents of Daudi cells were investigated using voltage clamp techniques. Before mitogenic stimulation, the cells were electrically quiet. Within several minutes of the addition of anti-μ antibodies to the bath solution, inward currents were observed at negative voltages. Whole-cell currents changed instantly with voltage steps and were transmembrane potential sensitive in that at potentials more positive than ?40 mV no currents were detectable. A similar conductance was also activated by the introduction of IP3 into the intracellular solution, suggesting that IP3 generation after surface IgM crosslinking is involved in the activation of this conductance. Both anti-μ and IP3 induced currents were blocked by 1 mM La+++, which is known to block Ca++ channels. These results strongly support the presence of membrane Ca++ channels in human B cells that function in the early stages of activation. Changes in transmembrane potential appear to be important in regulating Ca++ influx. These mechanisms work in concert to regulate the level of [Ca++]i during the early phases of human B cell activation. © 1993 Wiley-Liss, Inc.  相似文献   

18.
《Journal of Physiology》1996,90(5-6):317-319
Changes in [Ca2+]i were measured in layer II–III pyramid cells of the rat visual cortex slices during application of either LTP or LTD inducing stimulation protocols. At dendritic sites activated by the stimulated afferents [Ca2+]i reached higher amplitudes and decayed more slowly with LTP than with LTD inducing stimuli. In the presence of Ca2+ chelators, the stimulation protocol that would normally produce LTP induced either LTD or failed to induce synaptic modifications altogether. These results support the hypothesis that the polarity of synaptic gain changes depends on the magnitude of postsynaptic [Ca2+]i reponses, the induction of LTP requiring a more pronounced surge of [Ca2+i than the induction of LTD.  相似文献   

19.
Subcellular localization of 45Ca++ in brain was determined after intracerebroventricular injection of the isotope in mice. Acute morphine injection selectively depleted 45Ca++ from synaptic vesicles while chronic morphine treatment increased the 45Ca++ in vesicular fractions. The elevated vesicular 45Ca++ found in tolerant-dependent animals rapidly declined during naloxone precipitated abstinence. These effects of morphine on brain Ca++ localization are discussed in terms of their possible relationship to neurotransmitter release and tolerance and dependence development.  相似文献   

20.
Binding of [65Zn++] and [45Ca++] to the acetylcholine (ACh)-receptor, purified from the Torpedo electric organ, was studied by equilibrium dialysis. Whereas [65Zn++] bound to 56 nmoles of sites per mg protein with a dissociation constant of 2.5 × 10−6M, no binding of [45Ca++] at concentrations up to 10−3M could be detected with this method. However, the binding of [acetyl-3H]choline to the receptor was blocked equally by very high Zn++ or Ca++ concentrations, and the Ki for this low affinity binding was 7 × 10−3M. The high affinity binding of [65Zn++] to the receptor was blocked best by Cd++ then Co++ and Mn++, but least by Mg++ and Ca++. When the purified ACh-receptor itself was analyzed for the presence of cations by atomic absorption, it was discovered that 4.7% of its weight was due to bound Ca++ that could not be removed even by extensive dialysis. When Ca++-free solutions (containing 1 mM EDTA) were used during purification, 0.6% of the molecular weight of the receptor was still due to bound Ca++. This was equivalent to 15 moles of Ca++ for each mole of ACh bound at saturation. It is suggested that the source of this Ca++ is endogenous, and that it is tightly bound to the ACh-receptor molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号