首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to perform flow cytometric analysis of C11-BODIPY581/591 oxidation in fowl and geese sperm as a marker for membrane lipid peroxidation (LPO) and to establish if the cryopreservation process would make sperm membranes more susceptible to oxidative stress. The experiment was carried out on 10 meat type line Flex roosters and 10 White Koluda® geese. The semen was collected two times a week, by dorso-abdominal massage method and pooled from 10 individuals of each species. Fowl semen samples were subjected to cryopreservation using the “pellet” method and Dimethylacetamide (DMA) as a cryoprotectant. Geese semen samples were cryopreserved in plastic straws in a programmable freezing unit with Dimethyloformamide (DMF) as the cryoprotectant. A fluorescent lipid probe C11-BODIPY581/591 provided with two double bonds that are oxidized during their contact with ROS, was used for the purpose of the assessment of the LPO in freshly diluted semen samples and frozen-thawed semen samples. This probe changes its color according to its state (non peroxidized: red; peroxidized: green). Flow cytometric analysis was used to monitor these changes. The White Koluda® geese fresh semen had a higher level of LPO than the Flex fresh semen (P > 0.01). The cryopreservation of fowl semen significantly (P > 0.01) increased the percentage of live and dead spermatozoa with lipid peroxidation. In frozen-thawed semen of White Koluda® geese the percentage of live spermatozoa with LPO significantly decreased (P > 0.05) whereas significantly (P > 0.01) higher level of dead cells with LPO was observed. There were significant differences between the two studied species. After thawing, the percentage of live and dead spermatozoa with lipid peroxidation was higher in fowl semen than in geese semen (P > 0.01). In conclusion, our data clearly indicate the existence of species specific differences in susceptibility of spermatozoa to the oxidation of PUFAs in the cell membranes, where such oxidation is caused by cryopreservation. This study shows that avian spermatozoa are vulnerable to radicals and frozenthawed sperm have higher level of LPO than fresh sperm. According to our observation, fowl semen is more susceptible to LPO than geese semen.  相似文献   

2.
The mitochondrial probe 5,5′,6,6′‐tetrachloro‐1,1′,3,3′‐tetraethylbenzimidazolyl‐carbocyanine iodide (JC‐1) not only identifies mitochondria exhibiting low membrane potentials by the emission of green fluorescence (range, 510–520 nm) but also differentiates these from mitochondria exhibiting relatively high membrane potentials. This discrimination occurs because JC‐1 forms aggregates at high membrane potentials. These J‐aggregates emit a bright red‐orange fluorescence at 590 nm. In this study, JC‐1 was combined with the classical dead cell stain, propidium iodide (PI), to identify a spectrum of functional sperm along with degenerate sperm. Flow cytometric analysis of bull sperm showed that the aggregate:monomer ratio differed among bulls before cryopreservation (P < 0.001) but not afterwards (P > 0.05). The effects of stain equilibration time, sperm concentration, and live:dead ratios were examined. The addition of SYBR‐14 to the JC‐1 and PI combination enhanced the distinction between the red PI‐stained and red‐orange JC‐1–stained populations. This discrimination between J‐aggregates and the PI‐stained sperm was affected by sperm concentration. These studies show that JC‐1 can be useful in monitoring mitochondrial function in bovine sperm. Mol. Reprod. Dev. 53:222–229, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Preparations of rat liver sinusoidal plasma membrane have been tested for their ability to metabolize the hepatotoxin carbon tetrachloride (CCl4) to reactive free radicals in vitro and compared in this respect with standard preparations of rat liver microsomes. The sinusoidal plasma membranes were relatively free of endoplasmic reticulum-associated activities such as the enzymes of the cytochrome P450 system and glucose-6-phosphatase. CCl4 metabolism was measured as (i) covalent binding of [14C]-CCl4 to membrane protein, (ii) electron spin resonance spin-trapping of CCl3. radicals and (iii) CCl4-induced lipid peroxidation. By all of these tests, purified sinusoidal plasma membranes were found unable to metabolize CCl4. The fatty acid composition of the plasma membranes was almost identical to that of the microsomal preparation and both membrane fractions exhibited similar rates of the lipid peroxidation that was stimulated non-enzymically by gamma-radiation or incubation with ascorbate and iron. The absence of CCl4-induced lipid peroxidation in the plasma membranes seems to be due, therefore, to an absence of CCl4 activation rather than an inherent resistance to lipid peroxidation. We conclude that damage to the hepatocyte plasma membrane during CCl4 intoxication is not due to a significant local activation of CCl4 to CCl3. within that membrane.  相似文献   

4.
Maturation of spermatozoa in the epididymis involves remodelling of many protein and lipid components of the plasma membrane. In this investigation we have examined whether (a) diffusion of lipid molecules in the surface membrane changes during epididymal maturation; (b) diffusion is spatially restricted; and (c) differences in lipid diffusion can be related to known changes in membrane composition. For this purpose we have used the technique of fluorescence recovery after photobleaching (FRAP) to measure diffusion of the lipid reporter probe ODAF (5‐(octa‐decanoyl)aminofluorescein) in spermatozoa from two species: ram, where substantial changes in membrane lipids occur during passage through the epididymis, and boar, where there are relatively few changes. Results on ram spermatozoa show that between the testis and cauda epididymidis, diffusion coefficients values (D) for ODAF increase significantly in all the surface domains. Percentage recovery values (%R) remain constant irrespective of maturational status. In boar spermatozoa, however, D and %R values do not change significantly between epididymal regions. Cholesterol, which has widespread effects on the behaviour of lipid molecules in cell membranes, was visualized by binding of filipin. In both species filipin was concentrated over the acrosomal domain and cytoplasmic droplet of testicular spermatozoa, but in the epididymis it had a heterogenous distribution over the whole head and tail. These results are discussed in relation to the establishment and maintenance of lipid domains in spermatozoa and their influence on development of fertilizing capacity. Mol. Reprod. Dev. 52:207–215, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Human apolipoprotein C-I (apoC-I) is an exchangeable apolipoprotein that binds to lipoprotein particles in vivo. In this study, we employed a LC-MS/MS assay to demonstrate that residues 38-51 of apoC-I are significantly protected from proteolysis in the presence of 1,2-dimyristoyl-3-sn-glycero-phosphocholine (DMPC). This suggests that the key lipid-binding determinants of apoC-I are located in the C-terminal region, which includes F42 and F46. To test this, we generated site-directed mutants substituting F42 and F46 for glycine or alanine. In contrast to wild-type apoC-I (WT), which binds DMPC vesicles with an apparent Kd [Kd(app)] of 0.89 microM, apoC-I(F42A) and apoC-I(F46A) possess 2-fold weaker affinities for DMPC with Kd(app) of 1.52 microM and 1.58 microM, respectively. However, apoC-I(F46G), apoC-I(F42A/F46A), apoC-I(F42G), and apoC-I(F42G/F46G) bind significantly weaker to DMPC with Kd(app) of 2.24 microM, 3.07 microM, 4.24 microM, and 10.1 microM, respectively. Sedimentation velocity studies subsequently show that the protein/DMPC complexes formed by these apoC-I mutants sediment at 6.5S, 6.7S, 6.5S, and 8.0S, respectively. This is compared with 5.0S for WT apoC-I, suggesting the shape of the particles was different. Transmission electron microscopy confirmed this assertion, demonstrating that WT forms discoidal complexes with a length-to-width ratio of 2.57, compared with 1.92, 2.01, 2.16, and 1.75 for apoC-I(F42G), apoC-I(F46G), apoC-I(F42A/F46A), and apoC-I(F42G/F46G), respectively. Our study demonstrates that the C-terminal amphipathic alpha-helix of human apoC-I contains the major lipid-binding determinants, including important aromatic residues F42 and F46, which we show play a critical role in stabilizing the structure of apoC-I, mediating phospholipid interactions, and promoting discoidal particle morphology.  相似文献   

6.
The aging eye appears to be at considerable risk from oxidative stress. Lipid peroxidation (LPO) is one of the mechanisms of cataractogenesis, initiated by enhanced promotion of oxygen free radicals in the eye fluids and tissues and impaired enzymatic and non-enzymatic antioxidant defenses of the crystalline lens. The present study proposes that mitochondria are one of the major sources of reactive oxygen species (ROS) in mammalian and human lens epithelial cells and that therapies that protect mitochondria in lens epithelial cells from damage and reduce damaging ROS generation may potentially ameliorate the effects of free radical-induced oxidation that occur in aging ocular tissues and in human cataract diseases. It has been found that rather than complete removal of oxidants by the high levels of protective enzyme activities such as superoxide dismutase (SOD), catalase, lipid peroxidases in transparent lenses, the lens conversely, possess a balance between peroxidants and antioxidants in a way that normal lens tends to generate oxidants diffusing from lenticular tissues, shifting the redox status of the lens to become more oxidizing during both morphogenesis and aging. Release of the oxidants (O(2)(-)·, H(2)O(2) , OH·, and lipid hydroperoxides) by the intact lenses in the absence of respiratory inhibitors indicates that these metabolites are normal physiological products inversely related to the lens life-span potential (maturity of cataract) generated through the metal-ion catalyzed redox-coupled pro-oxidant activation of the lens reductants (ascorbic acid, glutathione). The membrane-bound phospholipid (PL) hydroperoxides escape detoxification by the lens enzymatic reduction. The lens cells containing these species would be vulnerable to peroxidative attack which trigger the PL hydroperoxide-dependent chain propagation of LPO and other damages in membrane (lipid and protein alterations). The increased concentrations of primary LPO products (diene conjugates, lipid hydroperoxides) and end fluorescent LPO products were detected in the lipid moiety of the aqueous humor samples obtained from patients with cataract as compared to normal donors. Since LPO is clinically important in many of the pathological effects and aging, new therapeutic modalities, such as patented N-acetylcarnosine prodrug lubricant eye drops, should treat the incessant infliction of damage to the lens cells and biomolecules by reactive lipid peroxides and oxygen species and "refashion" the affected lens membranes in the lack of important metabolic detoxification of PL peroxides. Combined in ophthalmic formulations with N-acetylcarnosine, mitochondria-targeted antioxidants are promising to become investigated as a potential tool for treating a number of ROS-related ocular diseases, including human cataracts.  相似文献   

7.
8.
Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A2 and C). A phospholipase C–diacylglycerol lipase–monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.  相似文献   

9.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号