首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The Allee effect can cause alternative stable states in population abundance of invasive species. Sudden eruption of invading populations from low to high abundance may be viewed as a regime shift from one alternative state to another. Previous research proposed several types of early warning signals to predict regime shifts in ecological systems such as polluted lakes and semiarid grasslands. This paper explores theoretically the potential of such indicators in predicting demographic regime shifts of invading populations. I analyzed a stochastic differential equation model for the population dynamics of an invasive species subject to Allee effects and propagule pressure. Diffusion approximation to the stochastic model suggests that persistent propagule pressure makes demographic regime shifts inevitable, but Allee effects can lengthen the mean time until regime shifts virtually indefinitely. To compare the potential of indicators, I examined standard deviation, skewness, and estimated return rates of longitudinal population abundance. I found that standard deviation showed a distinct increase as regime shifts became more likely, but skewness and return rates showed no clear trends. This result suggests that standard deviation might be a useful warning signal for forecasting an impending demographic regime shift of invading populations during the period when their abundance is still low.  相似文献   

2.
Changing skewness: an early warning signal of regime shifts in ecosystems   总被引:1,自引:0,他引:1  
Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.  相似文献   

3.
Prediction of ecosystem response to global environmental change is a pressing scientific challenge of major societal relevance. Many ecosystems display nonlinear responses to environmental change, and may even undergo practically irreversible ‘regime shifts’ that initiate ecosystem collapse. Recently, early warning signals based on spatiotemporal metrics have been proposed for the identification of impending regime shifts. The rapidly increasing availability of remotely sensed data provides excellent opportunities to apply such model‐based spatial early warning signals in the real world, to assess ecosystem resilience and identify impending regime shifts induced by global change. Such information would allow land‐managers and policy makers to interfere and avoid catastrophic shifts, but also to induce regime shifts that move ecosystems to a desired state. Here, we show that the application of spatial early warning signals in real‐world landscapes presents unique and unexpected challenges, and may result in misleading conclusions when employed without careful consideration of the spatial data and processes at hand. We identify key practical and theoretical issues and provide guidelines for applying spatial early warning signals in heterogeneous, real‐world landscapes based on literature review and examples from real‐world data. Major identified issues include (1) spatial heterogeneity in real‐world landscapes may enhance reversibility of regime shifts and boost landscape‐level resilience to environmental change (2) ecosystem states are often difficult to define, while these definitions have great impact on spatial early warning signals and (3) spatial environmental variability and socio‐economic factors may affect spatial patterns, spatial early warning signals and associated regime shift predictions. We propose a novel framework, shifting from an ecosystem perspective towards a landscape approach. The framework can be used to identify conditions under which resilience assessment with spatial remotely sensed data may be successful, to support well‐informed application of spatial early warning signals, and to improve predictions of ecosystem responses to global environmental change.  相似文献   

4.
Regime shifts in a social-ecological system   总被引:1,自引:0,他引:1  
Ecological regime shifts are rarely purely ecological. Not only is the regime shift frequently triggered by human activity, but the responses of relevant actors to ecological dynamics are often crucial to the development and even existence of the regime shift. Here, we show that the dynamics of human behaviour in response to ecological changes can be crucial in determining the overall dynamics of the system. We find a social–ecological regime shift in a model of harvesters of a common-pool resource who avoid over-exploitation of the resource by social ostracism of non-complying harvesters. The regime shift, which can be triggered by several different drivers individually or also in combination, consists of a breakdown of the social norm, sudden collapse of co-operation and an over-exploitation of the resource. We use the approach of generalized modeling to study the robustness of the regime shift to uncertainty over the specific forms of model components such as the ostracism norm and the resource dynamics. Importantly, the regime shift in our model does not occur if the dynamics of harvester behaviour are not included in the model. Finally, we sketch some possible early warning signals for the social–ecological regime shifts we observe in the models.  相似文献   

5.
Regime shifts in stochastic ecosystem models are often preceded by early warning signals such as increased variance and increased autocorrelation in time series. There is considerable theoretical support for early warning signals, but there is a critical lack of field observations to test the efficacy of early warning signals at spatial and temporal scales relevant for ecosystem management. Conditional heteroskedasticity is persistent periods of high and low variance that may be a powerful leading indicator of regime shift. We evaluated conditional heteroskedasticity as an early warning indicator by applying moving window conditional heteroskedasticity tests to time series of chlorophyll-a and fish catches derived from a whole-lake experiment designed to create a regime shift. There was significant conditional heteroskedasticity at least a year prior to the regime shift in the manipulated lake but there was no significant conditional heteroskedasticity in an adjacent reference lake. Conditional heteroskedasticity was an effective leading indicator of regime shift for the ecosystem manipulation.  相似文献   

6.
Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale‐free patterning. These models simulate shifts from extensive vegetative cover to bare, desert‐like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.  相似文献   

7.
浅水湖泊生态系统稳态转换的阈值判定方法   总被引:2,自引:0,他引:2  
李玉照  刘永  赵磊  邹锐  王翠榆  郭怀成 《生态学报》2013,33(11):3280-3290
浅水湖泊生态系统对人类干扰的反应会随着干扰力度的改变或增强而出现突然的变化,即发生稳态转换;对其机理和驱动机制的揭示将有助于对湖泊富营养化的控制及恢复.基于“多稳态”理论的稳态转换研究已广泛开展,但对浅水湖泊生态系统稳态转换的驱动机制结论各异,采用的阈值判定方法相差很大,主要有实验观测、模型模拟和统计分析3种.实验观测多关注少数特定指标,指标筛选过程复杂且工作量大;模型模拟虽能从较为全面的尺度上理解生态系统稳态变化的特征和主要机理过程,但在模型误差和不确定性的处理等问题上尚存在不足;统计分析方法基于对长时间序列数据的统计变化规律分析,用以判断或者预警稳态转换现象的发生,是目前最为常用的方法.目前稳态转换领域的研究大都是对已发生的稳态转换进行机制分析或过程反演,对未来预测与预警的问题仍然亟需加强.  相似文献   

8.
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here, we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of “critical slowing down” that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down; (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system, bearing in mind that a positive indication for some systems is a negative indication in others; and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.  相似文献   

9.
Catastrophic and sudden collapses of ecosystems are sometimes preceded by early warning signals that potentially could be used to predict and prevent a forthcoming catastrophe. Universality of these early warning signals has been proposed, but no formal proof has been provided. Here, we show that in relatively simple ecological models the most commonly used early warning signals for a catastrophic collapse can be silent. We underpin the mathematical reason for this phenomenon, which involves the direction of the eigenvectors of the system. Our results demonstrate that claims on the universality of early warning signals are not correct, and that catastrophic collapses can occur without prior warning. In order to correctly predict a collapse and determine whether early warning signals precede the collapse, detailed knowledge of the mathematical structure of the approaching bifurcation is necessary. Unfortunately, such knowledge is often only obtained after the collapse has already occurred.  相似文献   

10.
张璐  吕楠  程临海 《生态学报》2023,43(15):6486-6498
在日益加剧的气候变化和土地开垦、放牧等人类活动干扰下,具有多稳态特征的干旱区生态系统可能会经历从相对健康状态到退化状态的稳态转换,导致生态系统的功能下降。早期预警信号的识别是生态系统稳态转换研究的热点,也是管理实践中防止生态系统退化的关键环节。以往预警信号研究聚焦于通用信号如自相关性、方差等统计学指标,然而这些指标对于具有特定机制的干旱区生态系统可能并不适用。基于干旱区景观格局特征所发展起来的空间指标为生态系统稳态转换提供了独特的空间视角,对于理解干旱区生态系统退化过程和机理具有科学意义和实践价值。介绍了干旱区生态系统稳态转换现象及其转换机制;聚焦景观生态学的指标和方法,从空间视角总结基于干旱区景观格局特征的关键预警指标(植被覆盖度、植被斑块形态、植被斑块大小频率分布和水文连通性等),重点剖析这些关键指标的概念、量化方法、识别特征及其实践应用;最后针对指标的优势和局限性对未来的研究方向进行展望,包括发掘潜在景观指标,加强干旱区生态系统变化的多种驱动要素的相互作用机制研究,开展多时空尺度的实证研究,构建生态系统稳态转换预警信号的整体分析框架,以及加强指标阈值的量化研究等方面。  相似文献   

11.
随着气候变化和人类活动对陆地生态系统双重扰动的不断加剧,越来越多的研究已经意识到生态系统结构和功能会发生难以预知的突变,并且恢复起来需要很长时间.开发判别典型生态系统临界转换的早期预警模型及理解其生态学机制成为生态学研究的热点.目前,基于跨越多个时空尺度的理论和实验研究,提出了多种预警陆地生态系统临界转换的理论框架和指...  相似文献   

12.
The size of the basin of attraction in ecosystems with alternative stable states is often referred to as "ecological resilience." Ecosystems with a low ecological resilience may easily be tipped into an alternative basin of attraction by a stochastic event. Unfortunately, it is very difficult to measure ecological resilience in practice. Here we show that the rate of recovery from small perturbations (sometimes called "engineering resilience") is a remarkably good indicator of ecological resilience. Such recovery rates decrease as a catastrophic regime shift is approached, a phenomenon known in physics as "critical slowing down." We demonstrate the robust occurrence of critical slowing down in six ecological models and outline a possible experimental approach to quantify differences in recovery rates. In all the models we analyzed, critical slowing down becomes apparent quite far from a threshold point, suggesting that it may indeed be of practical use as an early warning signal. Despite the fact that critical slowing down could also indicate other critical transitions, such as a stable system becoming oscillatory, the robustness of the phenomenon makes it a promising indicator of loss of resilience and the risk of upcoming regime shifts in a system.  相似文献   

13.
Many real ecological systems show sudden changes in behavior, phenomena sometimes categorized as regime shifts in the literature. The relative importance of exogenous versus endogenous forces producing regime shifts is an important question. These forces’ role in generating variability over time in ecological systems has been explored using tools from dynamical systems. We use similar ideas to look at transients in simple ecological models as a way of understanding regime shifts. Based in part on the theory of crises, we carefully analyze a simple two patch spatial model and begin to understand from a mathematical point of view what produces transient behavior in ecological systems. In particular, since the tools are essentially qualitative, we are able to suggest that transient behavior should be ubiquitous in systems with overcompensatory local dynamics, and thus should be typical of many ecological systems. This work has been supported by NSF Grant EF-0434266.  相似文献   

14.
赵东升  张雪梅 《生态学报》2021,41(16):6314-6328
在多稳态的生态系统中,外力可能导致生态系统状态突然之间发生不可逆转的转变,从而达到一个新的平衡状态。但目前对多稳态理论的系统研究很少,如何使用预警信号来预测生态系统的状态转变依旧是个难题。通过多稳态理论的梳理提出了一个更加综合的多稳态定义,并以放牧模型为例,系统总结了多稳态理论的相关概念,将多稳态理论应用在生态系统演替和扰沌理论的解释中;通过对生态系统稳态转换预警信号的原理、优缺点和应用条件的分析,对不同尺度下多稳态的研究方法进行了归纳;最后提出了目前多稳态领域的研究问题和未来的研究重点。结果表明:(1)将时间和空间预警信号结合在一起,并量化正确预警信号的概率,对错误预警信号的比例进行加权,可能会提供更准确的稳态转换的预报。(2)定量观测试验适用于小尺度的研究,而较大尺度的研究则采用简化的模型来模拟研究,选择正确的尺度极有可能改变预警信号的可靠性。(3)结合多稳态理论研究生态系统临界转换和反馈控制机制,并将基于性状的特征指标和进化动力学纳入其中,是生态系统修复实践的重要研究方向。(4)将多稳态相关理论和生态保护管理政策的实践相结合,是多稳态理论未来应用的前景。本研究为多稳态理论和实践的...  相似文献   

15.
于瑞宏  张笑欣  刘廷玺  郝艳玲 《生态学报》2017,37(11):3619-3627
浅水湖泊水体底泥交换强烈,极易受人类活动干扰,超过一定阈值即可能发生灾难性的稳态转换,对其有效识别有助于湖泊富营养化的及时防控与修复。浅水湖泊稳态转换可通过系统关键变量(叶绿素、溶解氧、浮游动物、鱼类等)的时间序列(判别不同稳态)、预警信号及阈值等进行识别,其中预警识别可为湖泊生态系统稳态转换提供预判信息,有利于早预警早行动。目前,浅水湖泊稳态转换预警识别因子(方差及自相关性等)主要用于"临界慢化"现象,但在强大外力作用、强烈随机扰动及极端事件下,这些"临界慢化"因子则可能出现误用或错用。基于浅水湖泊基本特征,针对稳态转换的不同驱动机制,探讨"临界慢化"因子的适用性与局限性,并展望其未来发展方向,旨在为湖泊生态系统稳态转换预警识别提供科学参考。  相似文献   

16.
宋明华  朱珏妃  牛书丽 《生态学报》2020,40(18):6282-6292
生态系统在气候变化和土地利用及人类活动等的影响下其状态会由某一稳态转变到另一稳态。由于环境压力的复杂性、非线性、随机性等特征,往往导致状态转变表现为非线性、突变、跃变等特点。准确界定系统状态跃变的拐点或阈值点存在很大的挑战,而捕捉接近临界拐点前的生态系统结构和属性上的变化特征作为早期预警信号是切实可行的。早期预警信号理论经历理论框架构建、方法确立、机理认知等近半个多世纪的探索,已经由最初的通过仅依赖检测临界点恢复力的速率减慢、方差增加、系统自相关增强等统计学信号过度到更加多样化的检测方法,如检测系统组分属性的变化特征,诊断系统组分各属性之间的关系变化,系统组分的性状变化、系统组分网络结构变化等等,并且试图整合多信号提高预警的精确性。利用来自自然生态系统的长时间高密度数据集和空间代替时间的数据集,基于多度及性状信号的早期预警,结合稳定性、临界恢复力的减速、以及统计参数的指示作用对系统跃变进行早期诊断和预警是预测生态学的主旨。早期预警信号的深入研究不仅能够完善已有理论的不足,同时还能够为生态系统的保护和管理提供切实有效的理论指导。  相似文献   

17.
Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.  相似文献   

18.
Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change in resource concentration. At specific points, vegetation can suddenly shift from one stable state to another. To predict such undesirable shifts, statistical indicators are proposed for early warning prediction. These so-called classical indicators can address whether vegetation state is moving towards the tipping point of an abrupt transition, however when the transition will occur is hard to predict. Recent studies suggest that complex network based indicators can improve early warning signals of abrupt transitions in complex dynamic systems. In this study, both classical and network based indicators are tested in a coupled land–atmosphere ecological model in which a scale-dependent hydrology-infiltration feedback and a large scale vegetation–precipitation feedback are represented. Multiple biomass equilibria are found in the model and abrupt transitions can occur when rainfall efficiency is decreased. Interaction network based indicators of these transitions are compared with classical indicators, such as the lag-1 autocorrelation and Moran's coefficient, with particular focus on the transition associated with desertification. Two criteria are used to evaluate the quality of these early warning indicators and several high quality network based indicators are identified.  相似文献   

19.
In the vicinity of tipping points—or more precisely bifurcation points—ecosystems recover slowly from small perturbations. Such slowness may be interpreted as a sign of low resilience in the sense that the ecosystem could easily be tipped through a critical transition into a contrasting state. Indicators of this phenomenon of ‘critical slowing down (CSD)’ include a rise in temporal correlation and variance. Such indicators of CSD can provide an early warning signal of a nearby tipping point. Or, they may offer a possibility to rank reefs, lakes or other ecosystems according to their resilience. The fact that CSD may happen across a wide range of complex ecosystems close to tipping points implies a powerful generality. However, indicators of CSD are not manifested in all cases where regime shifts occur. This is because not all regime shifts are associated with tipping points. Here, we review the exploding literature about this issue to provide guidance on what to expect and what not to expect when it comes to the CSD-based early warning signals for critical transitions.  相似文献   

20.
Critical transitions are qualitative changes of state that occur when a stochastic dynamical system is forced through a critical point. Many critical transitions are preceded by characteristic fluctuations that may serve as model‐independent early warning signals, implying that these events may be predictable in applications ranging from physics to biology. In nonbiological systems, the strength of such early warning signals has been shown partly to be determined by the speed at which the transition occurs. It is currently unknown whether biological systems, which are inherently high dimensional and typically display low signal‐to‐noise ratios, also exhibit this property, which would have important implications for how ecosystems are managed, particularly where the forces exerted on a system are anthropogenic. We examine whether the rate of forcing can alter the strength of early warning signals in (1) a model exhibiting a fold bifurcation where a state shift is driven by the harvesting of individuals, and (2) a model exhibiting a transcritical bifurcation where a state shift is driven by increased grazing pressure. These models predict that the rate of forcing can alter the detectability of early warning signals regardless of the underlying bifurcation the system exhibits, but that this result may be more pronounced in fold bifurcations. These findings have important implications for the management of biological populations, particularly harvested systems such as fisheries, and suggest that knowing the class of bifurcations a system will manifest may help discriminate between true‐positive and false‐positive signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号