首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Developmental changes in left and right ventricular diastolic filling patterns were determined noninvasively in isoflurane-anesthetized outbred ICR mice. Blood velocities in the mitral and tricuspid orifices were recorded in 16 embryos at days 14.5 (E14.5) and 17.5 of gestation (E17.5) using an ultrasound biomicroscope and also serially in three groups of postnatal mice aged 1-7 days (n = 23), 1-4 wk (n = 18), and 4-12 wk (n = 27) using 20-MHz pulsed Doppler. Postnatal body weight increased rapidly to 8 wk. Heart rate increased rapidly from approximately 180 beats/min at E14.5 to approximately 380 beats/min at 1 wk after birth and then more gradually to plateau at approximately 450 beats/min after 4 wk. Ventricular filling was quantified using the ratio of peak velocity of early ventricular filling due to active relaxation (E wave) to that of the late ventricular filling caused by atrial contraction (A wave) (peak E/A ratio) and the ratio of the peak E velocity to total time-velocity integral of E and A waves (peak E/total TVI ratio). Both ventricles had similar diastolic filling patterns in embryos (peak E/A ratio of 0.28 +/- 0.02 for mitral flow and 0.27 +/- 0.02 for tricuspid flow at E14.5). After birth, mitral peak E/A increased to >1 between the third and fifth day, continued to increase to 2.25 +/- 0.25 at approximately 3 wk, and then remained stable. The tricuspid peak E/A ratio increased much less but stabilized at the same age (increased to 0.79 +/- 0.03 at 3 wk). The peak E/total TVI ratio showed similar left-right differences and changes with development. Age-related changes were largely due to increases in peak E velocity. The results suggest that diastolic function matures approximately 3 wk postnatally, presumably in association with maturation of ventricular recoil and relaxation mechanisms.  相似文献   

2.
Cardiac troponin I (TnI) knockout mice exhibit a phenotype of sudden death at 17-18 days after birth due to a progressive loss of TnI. The objective of this study was to gain insight into the physiological consequences of TnI depletion and the cause of death in these mice. Cardiac function was monitored serially between 12 and 17 days of age by using high-resolution ultrasonic imaging and Doppler echocardiography. Two-dimensional B-mode and anatomical M-mode imaging and Doppler echocardiography were performed using a high-frequency ( approximately 20-45 MHz) ultrasound imaging system on homozygous cardiac TnI mutant mice (cTnI(-/-)) and wild-type littermates. On day 12, cTnI(-/-) mice were indistinguishable from wild-type mice in terms of heart rate, atrial and LV (LV) chamber dimensions, LV posterior wall thickness, and body weight. By days 16 through 17, wild-type mice showed up to a 40% increase in chamber dimensions due to normal growth, whereas cTnI(-/-) mice showed increases in atrial dimensions of up to 97% but decreases in ventricular dimensions of up to 70%. Mitral Doppler analysis revealed prolonged isovolumic relaxation time and pronounced inversion of the mitral E/A ratio (early ventricular filling wave-to-late atrial contraction filling wave) only in cTnI(-/-) mice indicative of impaired LV relaxation. cTnI(-/-) mouse hearts showed clear signs of failure on day 17, characterized by >50% declines in cardiac output, ejection fraction, and fractional shortening. B-mode echocardiography showed a profoundly narrowed tube-like LV and enlarged atria at this time. Our data are consistent with TnI deficiency causing impaired LV relaxation, which leads to diastolic heart failure in this model.  相似文献   

3.
4.
Glaucoma is associated with an increased incidence of cardiovascular disease and risk factors. The aim of the study was to assess the left ventricular (LV) function in patients with pseudoexfoliation (PEX) glaucoma using doppler-echocardiographic examinations. Two-dimensional and pulsed Doppler echocardiography of transmitral flow was performed in 21 patients with (PEX) glaucoma and 24 controls. LV systolic contraction and ejection were assessed using the LV ejection fraction (EF) and fractional shortening (FS). LV diastolic filling assessed parameters were: early, fast diastolic filling (E wave), late diastolic filling (A wave), ratio E/A, velocity time integral E wave (VTIE) and A wave (VTIA), their ratio (VTIE /VTIA), pressure at the end of filling (LVEDP) and a pulmonary capillary wedge pressure (PCWP). A significant difference was found concerning LV filling flow parameters in E, E/A, VTIA and ratio VTIA/ VTIE. No significant difference was found in EF, FS, A, VTIE, LVEDP and PCWP tested parameters. Our study indicates the possibility of slightly impaired diastolic function of LV in patients with PEX glaucoma assessed by Doppler-echocardiographic examinations.  相似文献   

5.
Increased dietary salt intake induces cardiac fibrosis in the spontaneously hypertensive rat (SHR), yet little information details its effects on left ventricular (LV) function. Additionally, young normotensive rats are more sensitive to the trophic effect of dietary sodium than older rats. Thus cardiac responses to salt loading were evaluated at two ages in the SHR; LV collagen content was also examined. SHR (8 or 20 wk of age) were given an 8% salt diet; their age-matched controls received standard chow. Echocardiographic indexes, arterial pressure, and LV hydroxyproline concentration were measured at 16 and 52 wk in the younger and older SHR groups, respectively. In most SHR, salt excess increased arterial pressure, LV mass, and hydroxyproline concentration and impaired LV relaxation manifested by prolonged isovolumic relaxation time, decreased early and atrial filling velocity ratio (V(E)/V(A)), and slower propagation velocity of E wave (V(P)). LV systolic function remained normal. However, one-quarter of the young salt-loaded SHR developed cardiac failure with systolic and diastolic dysfunction associated with greater LV mass and ventricular fibrosis. They also had lower arterial pressure, decreased fractional shortening, and a restrictive pattern of mitral flow. Moreover, the shorter deceleration time of the E wave and increased V(E)/V(P), an index of LV filling pressure, indicated increased LV stiffness in these rats. These findings demonstrated that sodium sensitivity in SHR is manifested not only by further pressure elevation but also by significant LV functional impairment that most likely is related to enhanced ventricular fibrosis. Moreover, the SHR are more susceptible to cardiac damage when high dietary salt is introduced earlier in life.  相似文献   

6.
Hypertension and exercise independently induce left ventricular (LV) remodeling and alter LV function. The purpose of this study was to determine systolic and diastolic LV pressure-volume relationships (LV-PV) in spontaneously hypertensive rats (SHR) with and without LV hypertrophy, and to determine whether 6 mo of exercise training modified the LV-PV in SHR. Four-month-old female SHR (n = 20), were assigned to a sedentary (SHR-SED) or treadmill-trained (SHR-TRD) group (approximately 60% peak O2 consumption, 5 days/wk, 6 mo), while age-matched female Wistar-Kyoto rats (WKY; n = 13) served as normotensive controls. The LV-PV was determined using a Langendorff isolated heart preparation at 4 (no hypertrophy: WKY, n = 5; SHR, n = 5) and 10 mo of age (hypertrophy: WKY, n = 8; SHR-SED, n = 8; SHR-TRD, n = 7). At 4 mo, the LV-PV in SHR was similar to that observed in WKY controls. However, at 10 mo of age, a rightward shift in the LV-PV occurred in SHR. Exercise training did not alter the extent of the shift in the LV-PV relative to SHR-SED. Relative systolic function, i.e., relative systolic elastance, was approximately 50% lower in SHR than WKY at 10 mo of age (P < 0.05). Doppler-derived LV filling parameters [early wave (E), atrial wave (A), and the E/A ratio] were similar between groups. LV capacitance was increased in SHR at 10 mo (P < 0.05), whereas LV diastolic chamber stiffness was similar between groups at 10 mo. Hypertrophic remodeling at 10 mo of age in female SHR is manifest with relative systolic decompensation and normal LV diastolic function. Exercise training did not alter the LV-PV in SHR.  相似文献   

7.
Mutations in the cardiac myosin heavy chain (MHC) can cause familial hypertrophic cardiomyopathy (FHC). A transgenic mouse model has been developed in which a missense (R403Q) allele and an actin-binding deletion in the alpha-MHC are expressed in the heart. We used an isovolumic left heart preparation to study the contractile characteristics of hearts from transgenic (TG) mice and their wild-type (WT) littermates. Both male and female TG mice developed left ventricular (LV) hypertrophy at 4 mo of age. LV hypertrophy was accompanied by LV diastolic dysfunction, but LV systolic function was normal and supranormal in the young TG females and males, respectively. At 10 mo of age, the females continued to present with LV concentric hypertrophy, whereas the males began to display LV dilation. In female TG mice at 10 mo of age, impaired LV diastolic function persisted without evidence of systolic dysfunction. In contrast, in 10-mo-old male TG mice, LV diastolic function worsened and systolic performance was impaired. Diminished coronary flow was observed in both 10-mo-old TG groups. These types of changes may contribute to the functional decompensation typically seen in hypertrophic cardiomyopathy. Collectively, these results further underscore the potential utility of this transgenic mouse model in elucidating pathogenesis of FHC.  相似文献   

8.
Left ventricular (LV) diastolic function during atrial fibrillation (AF) remains poorly understood due to the complex interaction of factors and beat-to-beat variability. The purpose of the present study was to elucidate the physiological determinants of beat-to-beat changes in LV diastolic function during AF. The RR intervals preceding a given cardiac beat were measured from the right ventricular electrogram in 12 healthy open-chest mongrel dogs during AF. Doppler echocardiography and LV pressure and volume beat-to-beat analyses were performed. The LV filling time (FT) and early diastolic mitral inflow velocity-time integral (E(vti)) were measured using the pulsed Doppler method. The LV end-diastolic volume (EDV), peak systolic LV pressure (LVP), minimum value of the first derivative of LV pressure curve (dP/dt(min)), and the time constant of LV pressure decay (tau) were evaluated with the use of a conductance catheter for 100 consecutive cardiac cycles. Beat-to-beat analysis revealed a cascade of important causal relations. LV-FT showed a significant positive linear relationship with E(vti) (r = 0.87). Importantly, there was a significant positive linear relationship between the RR interval and LV-EDV in the same cardiac beat (r = 0.53). Consequently, there was a positive linear relationship between LV-EDV and subsequent peak systolic LVP (r = 0.82). Furthermore, there were significant positive linear and negative curvilinear relationships between peak systolic LVP and dP/dt(min) (r = 0.95) and tau (r = -0.85), respectively, in the same cardiac beat. In addition, there was a significant negative curvilinear relationship between dP/dt(min) and tau (r = -0.86). We have concluded that the determinants of LV diastolic function in individual beats during AF depend strongly on the peak systolic LVP. This suggests that the major benefit of slower ventricular rate appears related to lengthening of LV filling interval, promoting subsequent higher peak systolic LVP and greater LV relaxation.  相似文献   

9.
10.
The spectral Doppler mitral flow pattern, alone or combined with tissue Doppler mitral annulus velocity, can be used to predict left ventricular (LV) filling pressure in humans, whereas invasive hemodynamic measurements are still required in the rat. This study was undertaken to assess whether LV end-diastolic pressure (LVEDP) can be estimated using Doppler echocardiography in the rat after myocardial infarction (MI). Thirty-seven rats (23 rats with MI after left coronary artery ligation and 14 sham-operated rats) were evaluated 3 mo after surgery with echo-Doppler and invasive hemodynamic measurements. Pulse wave spectral Doppler at the mitral valve tip was used to measure the E wave, the E wave deceleration time (DT), and the A wave; spectral Doppler tissue imaging was used to measure the early diastolic lateral mitral annulus velocity (E(a)). We found weak correlations between LVEDP and the peak velocity of the early mitral inflow (E), E/peak velocity of the late mitral inflow, and DT, and strong correlations with E(a) and especially with E/E(a) [R(2) = 0.89, LVEDP (in mmHg) = 0.987E/E(a) - 4.229]. Longitudinal followup of a subgroup of rats with MI revealed a marked rise of E/E(a) between days 7 and 21 in rats with heart failure only. We conclude that Doppler echocardiography can be used for serial assessment of LV diastolic function in rats with MI.  相似文献   

11.
Changes in diastolic indexes during normal aging, including reduced early filling velocity (E), lengthened E deceleration time (DT), augmented late filling (A), and prolonged isovolumic relaxation time (IVRT), have been attributed to slower left ventricular (LV) pressure (LVP) decay. Indeed, this constellation of findings is often referred to as the "abnormal relaxation" pattern. However, LV filling is determined by the atrioventricular pressure gradient, which depends on both LVP decline and left atrial (LA) pressure (LAP). To assess the relative influence of LVP decline and LAP, we studied 122 normal subjects aged 21-92 yr by Doppler echocardiography and MRI. LVP decline was assessed by color M-mode (V(p)) and the LV untwisting rate. Early diastolic LAP was evaluated using pulmonary vein flow systolic fraction, pulmonary vein flow diastolic DT, color M-mode (E/V(p)), and tissue Doppler (E/E(m)). Linear regression showed the expected reduction of E, increase in A, and prolongation of IVRT and DT with advancing age. There was no relation of age to parameters reflecting the rate of LVP decline. However, older age was associated with reduced E/V(p) (P = 0.008) and increased pulmonary vein systolic fraction (P < 0.001), pulmonary vein DT (P = 0.0026), and E/E(m) (P < 0.0001), all suggesting reduced early LAP. Therefore, reduced early filling in older adults may be more closely related to a reduced early diastolic LAP than to slower LVP decline. This effect also explains the prolonged IVRT. We postulate that changes in LA active or passive properties may contribute to development of the abnormal relaxation pattern during the aging process.  相似文献   

12.
13.
Long-term follow-up of left ventricular (LV) function using echocardiography has not been reported and, in this study, was carried out in normotensive (WKY) rats and spontaneously hypertensive rats (SHR). In 10 WKY rats and SHR, LV diastolic and systolic diameter (LVEDD and LVSD), shortening fraction (SF), and weight (LVW) were determined at 8, 15, 20, 35, and 80 wk of age. The ratio of early to late mitral flow and mitral annulus velocity (VE/VA and Em/Am), isovolumic relaxation time (IVRT), deceleration time of the E wave (DTE), Tei index, and mitral flow propagation velocity (Vp) were measured. No difference in LVEDD was found between SHR and WKY rats; however, LVEDD was increased at 80 wk in both strains. SF decreased slightly in old WKY rats. LVW progressively increased from 20 to 80 wk in both strains and was greater in SHR. VE/VA and Em/Am decreased at 80 wk in WKY rats. LV relaxation (IVRT, Tei index, and Vp) was progressively impaired in SHR compared with WKY rats. LV compliance (DTE) was altered in old SHR. Echocardiography permitted a long follow-up of LV function in SHR and WKY rats. Ventricular relaxation was impaired early in the life of SHR and progressed with aging. Furthermore, LV compliance was altered, but systolic function remained unchanged, in old SHR. In contrast, relaxation and SF were only slightly altered in old WKY rats, suggesting that pressure-related changes in LV function were the dominant features in the SHR.  相似文献   

14.
15.
Intermittent hypoxia due to sleep apnea syndrome is associated with cardiovascular diseases. However, the precise mechanisms by which intermittent hypoxic stress accelerates cardiovascular diseases are largely unclear. The aim of this study was to investigate the role of gp91(phox)-containing NADPH oxidase in the development of left ventricular (LV) remodeling induced by intermittent hypoxic stress in mice. Male gp91(phox)-deficient (gp91(-/-)) mice (n = 26) and wild-type (n = 39) mice at 7-12 wk of age were exposed to intermittent hypoxia (30 s of 4.5-5.5% O(2) followed by 30 s of 21% O(2) for 8 h/day during daytime) or normoxia for 10 days. Mean blood pressure and LV systolic and diastolic function were not changed by intermittent hypoxia in wild-type or gp91(-/-) mice, although right ventricular systolic pressure tended to be increased. In wild-type mice, intermittent hypoxic stress significantly increased the diameter of cardiomyocytes and interstitial fibrosis in LV myocardium. Furthermore, intermittent hypoxic stress increased superoxide production, 4-hydroxy-2-nonenal protein, TNF-alpha and transforming growth factor-beta mRNA, and NF-kappaB binding activity in wild-type, but not gp91(-/-), mice. These results suggest that gp91(phox)-containing NADPH oxidase plays a crucial role in the pathophysiology of intermittent hypoxia-induced LV remodeling through an increase of oxidative stress.  相似文献   

16.
Transverse aortic constriction (TAC) is an effective technique for inducing left ventricular (LV) hypertrophy in mice. With the use of transthoracic echocardiography and Doppler measurements, we studied the effects of an acute increase in pressure overload on LV contractile performance and peak systolic wall stress index (WSI) at early time points after TAC and the time course of the development of LV hypertrophy in mice. The LV mass index was similar between TAC and sham-operated mice at postoperative day 1 but progressively increased in TAC mice by day 10. There was no further increase in the LV mass index between postoperative days 10 and 20. On day 1, whereas peak systolic WSI increased significantly, the LV ejection fraction (LVEF) and percent fractional shortening (%FS) decreased in TAC mice compared with sham-operated mice. By day 10, peak systolic WSI, LVEF, and %FS had recovered to baseline levels and were not significantly different between postoperative days 10 and 20. Thus LV systolic performance in mice declines immediately after TAC, associated with increased peak systolic WSI, but recovers to baseline levels with the development of compensatory LV hypertrophy over 10-20 days.  相似文献   

17.
Left ventricular (LV) remodeling after myocardial infarction (MI) results from hypertrophy of myocytes and activation of fibroblasts induced, in part, by ligand stimulation of the ANG II type 1 receptor (AT1R). The purpose of the present study was to explore the specific role for activation of the AT 1a R subtype in post-MI remodeling and whether gender differences exist in the patterns of remodeling in wild-type and AT 1a R knockout (KO) mice. AT 1a R-KO mice and wild-type littermates underwent coronary ligation to induce MI or sham procedures; echocardiography and hemodynamic evaluation were performed 6 wk later, and LV tissue was harvested for infarct size determination, morphometric measurements, and gene expression analysis. Survival and infarct size were similar among all male and female wild-type and AT 1a R-KO mice. Hemodynamic indexes were also similar except for lower systolic blood pressure in the AT 1a R-KO mice compared with wild-type mice. Male and female wild-type and male AT 1a R-KO mice developed similar increases in LV chamber size, LV mass corrected for body weight (LV/BW), and myocyte cross-sectional area (CSA). However, female AT 1a R-KO mice demonstrated no increase in LV/BW and myocyte CSA post-MI compared with shams. Both male and female wild-type mice demonstrated higher atrial natriuretic peptide (ANP) levels after MI, with female wild types being significantly greater than males. However, male and female AT 1a R-KO mice developed no increase in ANP gene expression with MI despite an increase in LV mass and myocyte size in males. These data support that gender-specific patterns of LV and myocyte hypertrophy exist after MI in mice with a disrupted AT 1a R gene, and suggest that myocyte hypertrophy post-MI in females relies, in part, on activation of the AT 1a R. Further work is necessary to explore the potential mechanisms underlying these gender-based differences.  相似文献   

18.
A two-dimensional axisymmetric computer model is developed for the simulation of the filling flow in the left ventricle (LV). The computed results show that vortices are formed during the acceleration phases of the filling waves. During the deceleration phases these are amplified and convected into the ventricle. The ratio of the maximal blood velocity at the mitral valve (peak E velocity) to the flow wave propagation velocity (WPV) of the filling wave is larger than 1. This hemodynamic behavior is also observed in experiments in vitro (Steen and Steen, 1994, Cardiovasc. Res., 28, pp. 1821-1827) and in measurements in vivo with color M-mode Doppler echocardiography (Stugaard et al., 1994, J. Am. Coll. Cardiol., 24, 663-670). Computed intraventricular pressure profiles are similar to observed profiles in a dog heart (Courtois et al., 1988, Circulation, 78, pp. 661-671). The long-term goal of the computer model is to study the predictive value of noninvasive parameters (e.g., velocities measured with Doppler echocardiography) on invasive parameters (e.g., pressures, stiffness of cardiac wall, time constant of relaxation). Here, we show that higher LV stiffness results in a smaller WPV for a given peak E velocity. This result may indicate an inverse relationship between WPV and LV stiffness, suggesting that WPV may be an important noninvasive index to assess LV diastolic stiffness, LV diastolic pressure and thus atrial pressure (preload).  相似文献   

19.
Precise knowledge of the volume and rate of early rapid left ventricular (LV) filling elucidates kinematic aspects of diastolic physiology. The Doppler E wave velocity-time integral (VTI) is conventionally used as the estimate of early, rapid-filling volume; however, this implicitly requires the assumption of a constant effective mitral valve area (EMVA). We sought to evaluate whether the EMVA is truly constant throughout early, rapid filling in 10 normal subjects using cardiac magnetic resonance imaging (MRI) and contemporaneous Doppler echocardiography, which were synchronized via ECG. LV volume measurements as a function of time were obtained via MRI, and transmitral flow values were measured via Doppler echocardiography. The synchronized data were used to predict EMVA as a function of time during early diastole. Validation involved EMVA determination using 1) the short-axis echocardiographic images near the mitral valve leaflet tips, 2) the distance between leaflet tips in the echocardiographic parasternal long-axis view, and 3) the distance between leaflet tips from the MRI LV outflow tract view. Predicted EMVA values varied substantially during early rapid filling, and observed EMVA values agreed well with predictions. We conclude that the EMVA is not constant, and its variation causes LV volume to increase faster than is reflected by the VTI. These results reveal the mechanism of early rapid volumetric increase and directly affect the significance and physiological interpretation of the VTI of the Doppler E wave. Application to subjects in selected pathophysiological subsets is in progress.  相似文献   

20.
Extensive misexpression studies were carried out to explore the roles played by Tbx5, the expression of which is excluded from the right ventricle (RV) during cardiogenesis. When Tbx5 was misexpressed ubiquitously, ventricular septum was not formed, resulting in a single ventricle. In such heart, left ventricle (LV)-specific ANF gene was induced. In search of the putative RV factor(s), we have found that chick Tbx20 is expressed in the RV, showing a complementary fashion to Tbx5. In the Tbx5-misexpressed heart, this gene was repressed. When misexpression was spatially partial, leaving small Tbx5-negative area in the right ventricle, ventricular septum was shifted rightwards, resulting in a small RV with an enlarged LV. Focal expression induced an ectopic boundary of Tbx5-positive and -negative regions in the right ventricle, at which an additional septum was formed. Similar results were obtained from the transient transgenic mice. In such hearts, expression patterns of dHAND and eHAND were changed with definitive cardiac abnormalities. Furthermore, we report that human ANF promoter is synergistically activated by Tbx5, Nkx2.5 and GATA4. This activation was abrogated by Tbx20, implicating the pivotal roles of interactions among these heart-specific factors. Taken together, our data indicate that Tbx5 specifies the identity of LV through tight interactions among several heart-specific factors, and highlight the essential roles of Tbx5 in cardiac development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号