首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

2.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

3.
Spinach chloroplast fructose bisphosphatase (EC 3.1.3.11.) exists in both oxidised and reduced forms. Only the latter has the kinetic properties that allow it to function at physiological concentrations of fructose 1,6-bisphosphate and Mg2+. Illumination of freshly prepared type A chloroplasts causes a conversion of oxidised to reduced enzyme. The rate of this conversion does not limit the rate of CO2 fixation. In the dark the reduced enzyme partially reverts back to the oxidised form. If catalase is omitted from the reaction medium the rate of CO2 fixation by chloroplasts is decreased and seems to be limited by the rate of conversion of the enzyme to the reduced form. The physiological significance of the light dependent generation of dithiol compounds (such as thioredoxin) within chloroplasts is discussed.  相似文献   

4.
Feng L  Wang K  Li Y  Tan Y  Kong J  Li H  Li Y  Zhu Y 《Plant cell reports》2007,26(9):1635-1646
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of a rice plants 9,311 (Oryza sativa L.) cDNA in rice plants zhonghua11 (Oryza sativa L.). The genetic engineering enabled the plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperature than that of wild-type plants. The analyses of chlorophyll fluorescence and the content and activation of SBPase indicated that the enhancement of photosynthesis to high temperature was not related to the function of photosystem II but to the content and activation of SBPase. Western blotting analyses showed that high temperature stress led to the association of SBPase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than that in transgenic plants. The results in this study suggested that under high temperature stress, SBPase maintained the activation of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fraction and thus enhanced the tolerance of CO2 assimilation to high temperature stress. The results suggested that overexpression of SBPase might be an effective method for enhancing high temperature tolerance of plants.  相似文献   

5.
Rice grain yield is drastically reduced under low light especially in kharif (wet) season due to cloudy weather during most part of crop growth. Therefore, 50–60% of yield penalty was observed. To overcome this problem, identification of low light tolerant rice genotypes with a high buffering capacity trait such as photosynthetic rate has to be developed. Sedoheptulose-1,7 bisphosphatase, a light-regulated enzyme, plays pivotal role in the Calvin cycle by regenerating the substrate (RuBP) for RuBisCo and therefore, indirectly regulates the influx of CO2 for this crucial process. We found a potential role of SBPase expression and activity in low light tolerant and susceptible rice genotypes by analyzing its influence on net photosynthetic rate and biomass. We observed a significant relationship of yield with photosynthesis, SBPase expression and activity especially under low light conditions. Two tolerant and two susceptible rice genotypes were used for the present study. Tolerant genotypes exhibited significant but least reduction compared to susceptible genotypes in the expression and activity of SBPase, which was also manifested in its photosynthetic rate and finally in the grain yield under low light. However, susceptible genotypes showed significant reduction in SBPase activity along with photosynthesis and grain yield suggesting that tracking the expression and activity of SBPase could form a simple and reliable method to identify the low light tolerant rice cultivars. The data were analyzed using the Indostat 7.5, Tukey–Kramer method through Microsoft Excel 2019 and PAST4.0 software. The significant association of SBPase activity with the grain yield, net assimilation rate, electron transfer rate, biomass and grain weight were observed under low light stress. These traits should be considered while selecting and breeding for low light tolerant cultivars. Thus, SBPase plays a major role in the low light tolerance mechanism in rice.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00905-z) contains supplementary material, which is available to authorized users.  相似文献   

6.
1. Isolated intact spinach chloroplasts respond to changes of the sorbitol concentration of the suspending medium as near-perfect osmometers within a large range of osmotic potentials. Under isotonic conditions (=9–10 bar), their average osmotic volume is 24 m3 and the total volume 36 m3. The osmotic volume can be increased to 63 m3 by lowering the sorbitol concentration until a critical osmotic potential of =4 bar is reached. Below that value chloroplasts rupture. Between 10 bar and 4 bar, volume changes are reversible. 2. Increasing the chloroplast volume above 24 m3 causes inhibition of photosynthesis, with 50% inhibition occurring at an osmotic potential of =5–6 bar. This corresponds to an osmotic volume of 45–55 m3. Depending on the duration of hypotonic treatment, inhibition of photosynthesis is more or less reversible. 3. Between 4 and 10 bar, the chloroplast envelope exhibits a very low permeability for ferricyanide, many metabolites, and soluble stroma proteins. 4. Electron transport is not inhibited by swelling of chloroplasts. Also, the ATP/ADP-ratio remains unchanged. 5. The solute concentration in the chloroplasts appears to be optimal for photosynthesis at 10 bar. Increasing the chloroplast volume causes inhibition of photosynthesis by dilution effects.  相似文献   

7.
The reversibility of the inhibition of photosynthetic reactions by water stress was examined with four systems of increasing complexity—stromal enzymes, intact chloroplasts, mesophyll protoplasts, and leaf slices. The inhibition of soluble chloroplast enzymes by high solute concentrations was instantly relieved when solutes were properly diluted. In contrast, photosynthesis was not restored but actually more inhibited when isolated chloroplasts exposed to hypertonic stress were transferred to conditions optimal for photosynthesis of unstressed chloroplasts. Upon transfer, chloroplast volumes increased beyond the volumes of unstressed chloroplasts, and partial envelope rupture occurred. In protoplasts and leaf slices, considerable and rapid, but incomplete restoration of photosynthesis was observed during transfer from hypertonic to isotonic conditions. Chloroplast envelopes did not rupture in situ during water uptake. It is concluded that inhibition of photosynthesis by severe water stress is at the biochemical level brought about in part by reversible inhibition of chloroplast enzymes and in part by membrane damage which requires repair mechanisms for reversibility. Both soluble enzymes and membranes appear to be affected by the increased concentration of internal solutes, which is caused by dehydration.  相似文献   

8.
R.C. Leegood  D.A. Walker   《BBA》1980,593(2):362-370
1. The aim of this work was to investigate the mechanism of dark inactivation of fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) in isolated intact chloroplasts of Triticum aestivum.

2. Dark inactivation of the enzyme, which was rapid under aerobic conditions, was prevented under anaerobic conditions when chloroplasts were incubated in the absence of an electron acceptor. Electron acceptors such as oxaloacetate readily brought about inactivation under anaerobic conditions whether chloroplasts were illuminated or in the dark. Inactivation of the enzyme also occurred if illuminated or darkened anaerobic chloroplasts were exposed to oxygen.

3. Pyocyanine, which catalyses a cyclic electron flow around Photosystem I, also caused inactivation of the enzyme in illuminated, anaerobic chloroplasts.

4. It is proposed that the activity of fructose-1,6-bisphosphatase is regulated by the availability of electrons, and thus by electron acceptors, and that dark inactivation may occur by a direct reversal of the activation process.  相似文献   


9.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P fructose-1,6-bisphosphate - Fru6P fructose-6-phosphate - FBPase fructose-1,6-bisphosphatase Some of these results have been included in a preliminary report (Heldt et al. 1984)  相似文献   

10.
In order to increase production of a useful protein by the chloroplast transformation technique, it seems to be necessary to determine the upper limit for the accumulation of a biologically active foreign protein in chloroplasts and then improve photosynthetic capacity and plant productivity. Here we show that the stromal fractions of tobacco chloroplasts could accommodate an additional 200-260 mg ml(-1) of green fluorescent protein in the stroma without any inhibition of gas exchange under various light intensity and growth conditions. The minimum amount of fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) limiting photosynthesis was then calculated. Analyses of the photosynthetic parameters and the metabolites of transformants into which FBP/SBPase was introduced with various types of promoter (PpsbA, Prrn, Prps2 and Prps12) indicated that a 2- to 3-fold increase in levels of FBPase and SBPase activity is sufficient to increase the final amount of dry matter by up to 1.8-fold relative to the wild-type plants. Their increases were equivalent to an increase of <1 mg ml(-1) of the FBP/SBPase protein in chloroplasts and were calculated to represent <1% of the protein accumulated via chloroplast transformation. Consequently, >99% of the additional 200-260 mg ml(-1) of protein expressed in the chloroplasts could be used for the production of useful proteins in the photosynthesis-elevated transplastomic plants having FBP/SBPase.  相似文献   

11.
12.
Abstract Unlike wheat chloroplasts, wheat protoplasts showed a pronounced restoration of the induction phase after a short period of darkness. This difference was used to investigate the relative roles of light-induced reductive activation of enzymes and the auto-catalytic increase in the level of substrates in the control of the rate of photosynthesis during induction. Light activation and dark inactivation of ribulose 5-phosphate kinase, fructose 1,6-biphosphatase and NADP+-specific glyceraldehydephosphate dehydrogenase were measured. In this respect there was no appreciable difference between protoplasts and chloroplasts. In contrast, the level of photosynthetic intermediates remained constant in darkened isolated chloroplasts, but declined rapidly in chloroplasts isolated from darkened protoplasts. When fructose 1,6-bisphosphatase was pre-activated by treating protoplasts with dithiothreitol the lag was only slightly shortened. These results are discussed in terms of control of the rate of the photosynthesis during the lag by substrates rather than limitation imposed by activity of any of the enzymes measured.  相似文献   

13.
Anderson LE  Gibbons JT 《Protoplasma》2007,231(1-2):113-121
Summary. Immunocytolocalization experiments indicate that nuclear levels of the pea leaf cytosolic fructose bisphosphatase are higher in leaves located near the base of the plant and lower in expanded leaves at the apex. It seems possible that the cytosolic isozyme in the nucleus has a role in tissue aging. In contrast, there is no indication that leaf position or tissue age affects levels of the chloroplastic enzyme in the nucleus. The density of the chloroplast fructose bisphosphatase is higher in the nucleolus than in the nucleoplasm. Conversely, the density of the cytosolic isozyme is slightly higher in the nucleoplasm. Analysis of double immunolabeling experiments indicates that both isozymes are distributed nonrandomly with respect to DNA, and therefore colocalized with DNA, in the nucleus, and that the chloroplast isozyme is also distributed nonrandomly with respect to DNA in the chloroplast. Correspondence and reprints: Department of Biological Sciences m/c 066, University of Illinois-Chicago, 845 West Taylor, Chicago, Illinois 60607-7060, U.S.A.  相似文献   

14.
Sugar, a final product of photosynthesis, is reported to be involved in the defense mechanisms of plants against abiotic stresses such as salinity, water deficiency, extreme temperature and mineral toxicity. Elements involved in photosynthesis, sugar content, water oxidation, net photosynthetic rate, activity of enzyme and gene expression have therefore been studied in Homjan (HJ), salt-tolerant, and Pathumthani 1 (PT1), salt-sensitive, varieties of rice. Fructose-1,6-biphosphatase (FBP) and fructokinase (FK) genes were rapidly expressed in HJ rice when exposed to salt stress for 1–6 h and to a greater degree than in PT1 rice. An increase in FBP enzyme activity was found in both roots and leaves of the salt-tolerant variety after exposure to salt stress. A high level of sugar and a delay in chlorophyll degradation were found in salt-tolerant rice. The total sugar content in leaf and root tissues of salt-tolerant rice was 2.47 and 2.85 times higher, respectively, than in the salt-sensitive variety. Meanwhile, less chlorophyll degradation was detected. Salt stress may promote sugar accumulation, thus preventing the degradation of chlorophyll. Water oxidation by the light reaction of photosynthesis in the salt-tolerant variety was greater than that in the salt-sensitive variety, indicated by a high maximum quantum yield of PSII (F v/F m) and quantum efficiency of PSII (ΦPSII) with low nonphotochemical quenching (NPQ), leading to a high net photosynthetic rate. In addition, the overall growth performances in the salt-tolerant variety were higher than those in the salt-sensitive variety. The FBP gene expression and enzyme activity, sugar accumulation, pigment stabilization, water oxidation and net photosynthetic rate parameters in HJ rice should be further investigated as multivariate salt-tolerant indices for the classification of salt tolerance in rice breeding programs.  相似文献   

15.
16.
A positive clone against pea (Pisum sativum L.) chloroplast fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) antibodies was obtained from a copy DNA (cDNA) library in λgt11. The insert was 1261 nucleotides long, and had an open reading frame of 1143 base pairs with coding capability for the whole FBPase subunit and a fragment of a putative processing peptide. An additional 115 base pairs corresponding to a 3′-untranslated region coding for an mRNA poly(A)+ tail were also found in the clone. The deduced sequence for the FBPase subunit was a 357-amino-acid protein of molecular mass 39253 daltons (Da), showing 82–88% absolute homology with four chloroplastic FBPases sequenced earlier. The 3.1-kilobase (kb)KpnI-SacI fragment of the λgt11 derivative was subcloned between theKpnI-SacI restriction sites of pTZ18R to yield plasmid pAMC100. Lysates ofEscherichia coli (pAMC100) showed FBPase activity; this was purified as a 170-kDa protein which, upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, displayed a 44-kDa band. As occurs with native FBPases, this indicates a homotetrameric structure for the expressed FBPase. When assayed under excess Mg2+ (10 mM), the expressed enzyme had a higher affinity for the substrate than the native pea leaf FBPase; this parameter appears to be substantiated by a tenfold higher specific activity than that of the native enzyme. However, when activated with dithiothreitol plus saturating concentrations of pea thioredoxin (Td) f, both FBPase had similar activities, with a 4:1 Td f-FBPase stoichiometry. In contrast to the native pea chloroplast FBPase, theE. coli-expressed enzyme did not react with the monoclonal antibody GR-PB5. It also had a higher heat sensitivity, with 42% residual activity after heating for 30 min at 60°C, conditions which preserved the native enzyme in a fully active state. These results show the existence of some difference(s) in the conformation of the two FBPases; this could be a consequence of a different expression of the genomic and cDNA clones, or be due to the need for some factor for the correct assembly of the oligomeric structure of the native chloroplast enzyme. Accession number for pea chloroplast FBPase coding sequence: X68826 in the European Molecular Biology Laboratory (EMBL)  相似文献   

17.
Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 < 10 μM). Specifically, when the substituents of F, Cl, OCH3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5–55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 μM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 μM, respectively.  相似文献   

18.
Thioredoxin (Td) f from pea (Pisum sativum L.) leaves was purified by a simple method, which provided a high yield of homogeneous Td f. Purified Td f had an isoelectric point of 5.4 and a relative molecular mass (Mr) of 12 kilodaltons (kDa) when determined by filtration through Superose 12, but an Mr of 15.8 kDa when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein remained fully active for several months when conserved frozen at — 20° C. The pea protein was able to activate fructose1,6-bisphosphatase (FBPase; EC 3.1.3.11), but in contrast to other higher-plant Td f proteins, was not functional in the modulation of NADP+-malate dehydrogenase activity. In spite of the absence of immunological cross-reactions of pea and spinach Td f proteins with the corresponding antibodies, pea Td f activated not only the homologous FBPase, but also the spinach enzyme. The saturation curves for pea FBPase, either with fructose-1,6-bisphosphate in the presence of different concentrations of homologous Td f, or with pea Td f in the presence of excess substrate, showed sigmoid kinetics; this can be explained on the basis of a random distribution of fructose-1,6-bisphosphate, and of the oxidized and reduced forms of the activator, among the four Td f- and substrate-binding sites of this tetrameric enzyme. From the saturation curves of pea and spinach Td f proteins against pea FBPase, a 4:1 stoichiometry was determined for the Td f-enzyme binding. This is in contrast to the 2:1 stoichiometry found for the spinach FBPase. The UV spectrum of pea Td f had a maximum at 277 nm, which shifted to 281 nm after reduction with dithiothreitol (s at 280 nm for 15.8-kDa Mr = 6324 M–1 · cm–1). The fluorescence emission spectrum after 280-nm excitation had a maximum at 334 nm, related to tyrosine residues; after denaturation with guanidine isothiocyanate an additional maximum appeared at 350 nm, which is concerned with tryptophan groups. Neither the native nor the denatured form showed a significant increase in fluorescence after reduction by dithiothreitol, which means that the tyrosine and tryptophan groups in the reduced Td f are similarly exposed. Pea Td f appears to have one cysteine residue more than the three cysteines earlier described for spinach and Scenedesmus Td f proteins.Abbreviations DDT dithiothreitol - ELISA enzyme-linked immunosorbent assay - FBPase fructose- 1,6-bisphosphatase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Td thioredoxin The authors are grateful to Mrs. Francisca Castro and Mr. Narciso Algaba for skilful technical assistance. This work was supported by grant PB87-0431 of Dirección General de Investigación Cientifica y Técnica (DGICYT, Spain).  相似文献   

19.
Intact chloroplasts capable of high rates of photosynthesis fail to reduce CO2 when illuminated in the absence of oxygen. While anaerobiosis limits proton gradient formation leading to ATP deficiency (Ziem-Hanck, U. and Heber, U. (1980) Biochim. Biophys. Acta 591, 266–274), light activation of fructose-1,6-bisphosphatase was also inhibited by anaerobiosis, whereas light activation of NADP-malate dehydrogenase was stimulated by anaerobiosis, indicating that reductant was still available for light activation. The chloroplast pool of NADP was largely reduced during illumination under anaerobiosis and electron transport to oxaloacetate was not inhibited by anaerobic conditions. Significant light activation of fructose-bisphosphatase was observed in anaerobic chloroplasts with 3-phosphoglycerate as substrate, but not with dihydroxyacetone phosphate (3-phosphoglycerate supports electron transport and hence proton gradient formation). In the absence of added substrates, illumination of anaerobic chloroplasts resulted in some light activation of fructose-bisphosphatase when the pH of the medium was increased. Under these conditions, light activation was stimulated by dihydroxyacetone phosphate. Dihydroxyacetone phosphate added together with oxaloacetate allowed light activation of fructose-bisphosphatase in anaerobic chloroplasts, while neither substrate added alone was effective. Formation of a transthylakoid proton gradient can therefore substitute for an alkaline suspension medium by causing an alkaline shift of the stromal pH on illumination. The data are interpreted as indicating that fructose-bisphosphatase, but not NADP-malate dehydrogenase, requires an alkaline pH and the presence of substrate for rapid reductive light activation and they bear on the interpretation of the lag observed in photosynthesis in chloroplasts and leaves on illumination after a prolonged dark period.  相似文献   

20.
Fructose-1,6-bisphosphatase (EC 3.1.3.11) activity increased markedly (greater than 10-fold) upon illumination of wheat leaves. Darkening caused a relatively slow but complete reversal of light activation. The effects of O2 and CO2 concentration and light intensity on fructose-bisphosphatase activation were measured. In ratelimiting light, 2% O2 stimulated enzyme activity, whereas varying the CO2 concentration had little effect. In saturating light, lowering the oxygen tension had no effect, but CO2 at near-saturating concentrations for photosynthesis inhibited enzyme activity. Dark inactivation of the enzyme was completely prevented by incubation of leaves in N2, but was facilitated by O2, indicating that O2 is the major oxidant in darkened leaves. It is argued that while fructose bisphosphatase is redox-regulated in leaves, modulation of enzyme activity by this mechanism is unlikely to contribute to the regulation of CO2 fixation in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号