首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autosomal variation and the genetic control of GPI has been determined by a comparison of electrophoretic patterns of F1 and backcross progeny of three inbred strains of mice. The locus controlling the production of GPI in the mouse has been designated Gpi-1. Two alleles at this locus have been described and designated Gpi-1 a and Gpi-1 b, which represent, respectively, the slow and fast electrophoretic forms. Twenty-seven inbred strains of mice have been classified for these two alleles. The absence of close linkage of Gpi-1 to seven other genetic loci has been determined. It has been demonstrated that the polymorphism of Gpi-1 is widely distributed in feral mice. GPI was expressed in vitro and in four types of malignant tumors.Supported by U.S. Public Health Service Grants GM-09966, from General Medical Sciences, and GY 4193.  相似文献   

2.
A single formamidase, which is different from the formamidases found in other tissues, occurs in the brains of mice. This enzyme is here called formamidase-5 and the gene symbol is designated For-5. Two alleles are recognized on the basis of their differential heat sensitivity: For-5 b is relatively heat stable and is present in strain C57BL/6J, while For-5 d is relatively heat sensitive and is present in strain DBA/2J. The heat sensitivity of formamidase-5 in 44 other inbred strains and substrains was tested and found to resemble that of C57BL/6J or DBA/2J. Thirty-six recombinant inbred strains derived from progenitors that differed at For-5 were studied to test for single-gene inheritance and linkage with other loci. Complete concordance was found with the esterase-10 locus (Es-10), indicating close linkage. The 99% upper confidence limit of the distance between For-5 and Es-10 is 3.7 centimorgans (cM). Es-10 is located on chromosome 14 about 19 cM from the centromere. An independent demonstration of linkage of For-5 with Es-10 and another chromosome 14 marker, hairless (hr), is provided by the finding that the HRS/J strain, which has been sibmated for 60 generations with forced heterozygosity at the hr locus, is cosegregating at For-5 and Es-10. A survey of 32 inbred strains and substrains revealed that the For-5 d allele is associated with the Es-10 b allele, and that the For-5 b allele is associated with Es-10 a and Es-10 c. Formamidase-5 segregates as expected in the F2 generation of crosses between strains bearing For-5 b and For-5 d alleles. It is possible that this unique formamidase of the brain is involved in the metabolism of a neurotransmitter substance.This research was sponsored in part by the Department of Energy under contract with the Union Carbide Corporation and in part by NIH Research Grant GM-18684 from the National Institute of General Medical Sciences. J. C. F. is a predoctoral Fellow supported by Grant CA 09104 from the National Cancer Institute. The Biology Division of Oak Ridge National Laboratory and the Jackson Laboratory are fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

3.
A new carboxylesterase isozyme (EC 3.1.1.1), designated ES-30, is described in mouse liver. Two phenotypes were distinguished, ES-30A, a possible null type, was found in SPE/Pas and in other lines derived fromMus spretus, and ES-30B was found in BALB/cJ and other laboratory inbred strains. ES-30B is characterized by a distinct electrophoretic band when stained using 5-bromoindoxyl acetate as the substrate. After isolation and purification from other esterases by ion-exchange chromatography and molecular sieving, the molecular mass was estimated by two independent methods to be 62 and 64 kDa, respectively. The activity of ES-30B is higher in adult males than in females and can be stimulatedin vivo by testosterone. The distribution of phenotypes on the progeny of a backcross series suggests a separate locus,Es-30, with the allele a for absence andb for presence of the isozyme. LocusEs-30 is shown to be closely linked toEs-2 and toEs-7 of cluster-2 on chromosome 8. The gene orderEs-9—Got-2—(Es-2, Es-7, Es-30) is suggested. This work was supported by the Deutsche Forschungsgemeinschaft. This is communication No. 72 of a research program devoted to the cellular distribution, genetics, and regulation of nonspecific esterases.  相似文献   

4.
A new liver-specific rat carboxylesterase isozyme (EC 3.1.1.1) designated esterase-18 (ES-18) is described. Genetic variation of ES-18 was examined in 93 inbred strains and substrains and a structural locusEs-18 was suggested, coding for either the presence (Es-18 a) or the absence (Es-18 b) of the isozyme. Linkage studies involving two backcross series revealed thatEs-18 resides in cluster 2 of LGV. No recombination betweenEs-18 and other cluster 2 loci was found in 19 lines of two RI strain sets or in the backcross series.R. K. was supported by the Sonderforschungsbereich 146 (Versuchstierforschung). O.D. was supported by the Deutsche Forschungsgemeinschaft (De 315/2). This is communication No. 65 of a research program devoted to the cellular distribution, regulation, and genetics of nonspecific esterases.  相似文献   

5.
Dill  Mary M.  Burton  Ronald S. 《Biochemical genetics》1984,22(3-4):339-347
Glutamate-oxaloacetate transaminase (GOT; EC 2.6.1.1) occurs as two electrophoretically distinguishable isozymes in the copepod Tigriopus californicus. The slower-migrating form, referred to as GOT2, is shown to be associated with the mitochondrial cell fraction. GOT2 phenotypes are inherited in typical Mendelian fashion, indicating that they are encoded by a nuclear gene. Allelic frequencies for electrophoretic variants of the two Got loci in 12 California populations of T. californicus show a sharp differentiation of local populations. Linkage studies demonstrated that Got-2 is linked to Got-1; a map of four loci in linkage group I is presented.This work was supported by NSF grant DEB-8207000 to R.S.B. and an NIH traineeship in Genetics to M.M.D.  相似文献   

6.
Two alleles at each of four esterase loci in Rattus norvegicus are described with regard to tissue expression, electrophoretic characterization, and genetic linkage. A previously described dominant gene for prealbumin serum esterase is demonstrated to exist as two codominant alleles in the genetically determined absence of the characteristic albumin esterase. The allelic composition of 16 inbred strains for four esterase genes is provided, and the heretofore ambiguous nomenclature of rat esterase genetics is standardized. Linkage of Es-1, Es-2, and Es-3 is demonstrated. Es-2 and Es-3 are tightly linked in that no recombination has been observed in 55 offspring. The same offspring demonstrated 9% recombination between Es-1 and the other two loci.This work was supported by a grant from the Brown-Hazen Fund of Research Corporation.  相似文献   

7.
A further esterase, esterase 11, which exhibits a polymorphism detectable by electrophoresis, has been observed in the house mouse, Mus musculus. In 15 inbred strains and two outbred strains, the ES-11A phenotype has been found, composed of two bands of enzyme activity of greater anodal electrophoretic mobility than the two bands of the ES-11B phenotype found in one inbred strain, one wild stock, and 101 wild mice. In F1 hybrids (IS/Cam×C57 BL/Gr), the phenotype shown corresponds to a mixture of the two parental phenotypes. In backcrosses, ES-11 segregates as an autosomal gene, designated Es-11, closely linked to Es-2 and Es-5 on chromosome 8.This work was supported by the Medical Research Council.  相似文献   

8.
The phosphoglucomutase (PGM) electrophoretic phenotype of the mouse (Mus musculus) consists of several distinct components which can be grouped into two major zones designated PGM-1 and PGM-2. Evidence presented here indicates that each zone is controlled by a single genetic locus denoted Pgm-1 and Pgm-2, respectively. Two variant forms segregated at the Pgm-1 locus. They were codominantly expressed and inherited as alleles at an autosomal locus. The alleles were termed Pgm-1 a (fast) and Pgm-1 b (slow). These alleles were separately fixed in a number of inbred strains of mice. Preliminary evidence based on wild mouse phenotypes indicates that variant forms also exist for PGM-2 which are inherited as alleles at an autosomal locus. Genetic linkage relationships have not been determined for these loci. PGM-1 variants and PGM-2 were expressed in mouse fibroblasts in vitro.Supported by U.S. Public Health Service grants GM-09966 and GM-07249 from General Medical Sciences and 5 F2 HD-35,531 from Child Health and Human Development; and Atomic Energy Commission contract AT(30-1)-3671.Postdoctoral Fellow of the U.S. Public Health Service.  相似文献   

9.
Three electrophoretic variants of plasma esterase in the albumin zone, presumably carboxylesterase, have been demonstrated in 250 rats representing a laboratory population of Wistar rats. Electrophoretic variants of the enzyme are believed to be controlled by two codominant alleles at the autosomal locus referred to as Es-2. The variant of carboxylesterase represented by a fast-migrating single band on starch gel electrophoresis is determined by the gene named Es-2 a, whereas the slow-migrating variant, represented by two bands, is under control of the allelic gene Es-2 b. Animals with Es-2 a/Es-2 b genotype have three bands of carboxylesterase in the albumin zone. Genetically determined polymorphism of plasma esterase, presumably carboxylesterase, in the prealbumin zone was shown in both laboratory and wild populations of rats. Breeding tests suggest that the gene referred to as Es-1 a, responsible for the presence of carboxylesterase in the prealbumin zone, is inherited dominantly, whereas animals homozygous for the allele Es-1 b locked this esterase fraction.  相似文献   

10.
A cluster of esterase loci has been identified on a segment of a rat linkage group V; however, the linear order of all the loci has not been established. We estimated the recombination frequencies of two locus combinations among five esterase loci (Es-1, Es-2, Es-3, Es-4, and Es-Si) and the linear order of the loci by using three sets of backcross matings: (1) (K:W × IS) × IS, (2) (K:W × IS) × IS, and (3) (SHR × W) × W). The linear order was determined to be Es-1-Es-4-Es-2-Es-3-Es-Si, although the order of Es-2 and Es-4 remains tentative. The sexinfluenced esterase (Es-Si) was demonstrated to be distinct from Es-1 and was proposed to be Es-Si locus with two alleles of Es-Si a (positive) and Es-Si b (null).This work was partly supported by Grants-in-Aid for Scientific Research, No. 339020 (1978), from the Ministry of Education, Science and Culture, Japan.  相似文献   

11.
The linkage of the hemoglobin (Hbb) and albino (c) loci has been determined from backcross progeny of the mating (WAG/Orl × Long Evans/Orl)F 1 × WAG/Orl. The data give 9.1 ± 1.8% recombination. The backcross (August/Orl × WAG/Orl)F 1 × August/Orl segregating for Hbb and pink-eyed yellow (p) shows 21.5±4.2% recombination. The proposed gene order on linkage group I is p-c-Hbb. Linkage of the seminal vesicle protein (Svp-1) and the nonagouti (a) loci has been determined from backcross progeny of the mating (August/Orl × Long Evans/Orl)F 1 × Long Evans/Orl. The data show 7.1±3.4% recombination. Svp-1 thus represents an additional marker in linkage group V. Two new autosomal variants have been reported: The locus which controls a plasma protein's polymorphism has been designated Gl-1 with two codominant alleles Gl-1a and Gl-1b. The other locus, controlling a testis esterases polymorphism, has been assigned the symbol Es-3 and has two codominant alleles Es-3a and Es-3b. The absence of linkage of Gl-1 and Es-3 to each other and to five different loci has also been reported. Rat and mouse analogy with respect to these markers and established linkages is discussed.  相似文献   

12.
Immunofixation after isoelectric focusing revealed two forms of mouse C6, C6A and C6M, both of which consist of two major protein bands and one or more acidic minor bands. They were distinguishable by their different isoelectric point (pI) ranges: C6M has more acidic pI ranges (pH < 6.2) than C6A (pH < 6.3). C6A was found in common inbred mice of Mus musculus domesticus, while C6M was found in inbred and wild mice of M. m. molossinus (Japanese wild mice, an Asian subspecies). Breeding experiments showed that these two forms of C6 were controlled by a single codominant autosomal locus. We propose the designation C-6 for this locus with two alleles, C-6 a and C-6 m , which encode for C6A and C6M, respectively. Linkage analysis indicated that the locus is not closely linked to the following loci: Idh-1, agouti, Amy-1, brown, Gpd-1, Mup-1, Pgm-2, Pgm-1, albino, Hbb, Es-1, Mod-1, Sep-1, Es-3, Igh-1, beige, Es-10, Sod-1, and C-3.  相似文献   

13.
Mouse aldehyde dehydrogenase genetics: Positioning of Ahd-1 on chromosome 4   总被引:1,自引:0,他引:1  
Electrophoretic variants of mitochondrial aldehyde dehydrogenase (AHD-A2) are widely distributed among inbred strains of Mus musculus and have been used to localize the gene encoding AHD-A2(Ahd-1) at the non-centromeric end of chromosome 4. In the mouse (Mus musculus), aldehyde dehydrogenase (AHD; E.C.1.2.1.3) exists as at least three isozymes which are differentially distributed in liver subcellular fractions (designated A2, B4 and Cy* for the mitochondrial, soluble and microsomal isozymes respectively) and in various tissues of this animal (Holmes, 1978a; 1978b; Timms & Holmes, 1981). Electrophoretic variants have been previously reported for the A2 and B4 isozymes among inbred strains of mice, and the genetic loci (designated Ahd-1 and Ahd-2) have been localized on chromosomes 4 and 19 respectively (Holmes, 1978b; Timms & Holmes, 1980). This paper describes further genetic analyses of AHD-A2 enabling Ahd-1 to be positioned at the non-centromeric end of chromosome 4. Forty-three inbred strains of Mus musculus were used in these studies (Table 1). Two series of matings were carried out. 1) Female SM/J mice and male NZC/B1 mice were mated to obtain F, female offspring which were backcrossed to male NZC/B1 mice. These progeny were used to examine the segregation and linkage relationship of b (brown), Pgm-2 (encoding phosphoglucomutase B) and Ahd-1 (Table 2). 2) Female C57BL/6J mice and male SM/J. mice were mated to obtain F, female offspring which were backcrossed to male SM/J mice. The segregation and linkage relationship of Pgm-2, Gpd-1 (encoding the liver and kidney isozyme of hexose-6 phosphate dehydrogenase) and Ahd-1 were examined for these backcross progeny (Table 3). Methods for preparing liver and kidney extracts and the cellulose acetate electrophoresis procedure for typing Ahd-1, Pgm-2 and Gpd-1 have been previously described (Holmes, 1978b). A previous study has described the electrophoretic patterns for allelic variants for mitochondria1 AHD and of the hybrid phenotype for this enzyme (Holmes, 1978b). The three-allelic isozyme pattern for hybrid animals was consistent with a dimeric subunit structure: AHD-A1A2, AHD-A1A2 and AHD-3, with the A1 and A2 subunits being encoded by separate alleles at a single locus, designated Ahd-1 (Ahd-1oand Ahd-1brespectively). The distribution of these alleles among 43 inbred strains of mice is given in Table 1. The allelic variants were approximately equally distributed among the inbred strains examined and no divergence of phenotype was observed among the 6 substrains of C57BL mice (Ahd-1aallele) and 5 substrains of BALB/c (Ahd-1ballele) mice examined. Genetic variants for phosphoglucomutase-B (PGM-B) have been reported by Shows, Ruddle and Roderick (1969) and the gene (Pgm-2) was subsequently localized on chromosome 4 near b (brown) by Chapman, Ruddle and Roderick (1970). Table 2 illustrates the results of a three-point cross between b, Pgm-2 and Ahd-1. Variation from the expected 1:1:1:1:1:1 ratio for unlinked loci was significant(x2= 73.15; 7 df; P < 1 × 10-5), indicating that the three loci are linked. Recombination frequency data are consistent with the gene order: b - Pgm-2 - Ahd-1 The second cross examined the segregation of Pgm-2, Ahd-1 and Gpd-1 loci (Table 3). The latter locus has been previously positioned on chromosome 4 (linkage group VIII) by Hutton & Roderick (1970) and Chapman (1975), and has been used to localize Ahd-1 in this region (Ahd-1 and Gpd-1 exhibit a recombination frequency of 10.3 ± 3.7 %) (Holmes, 1978b). The data from Table 3 is consistent with a gene order of Pgm-2 - Ahd-1 - Gpd-1. The recombination frequency data of Ahd-1 with Gpd-1, Pgm-2 and b also supports the proposal that Ahd-1 is localized between Pgm-2 and Gpd-1 (Tables 2 and 3; Holmes, 1978b). Recent metabolic studies have indicated that mitochondria1 aldehyde dehydrogenase (AHD) plays a very important role in the metabolism of acetaldehyde derived from ethanol, ensuring a low concentration of acetaldehyde in the blood leaving the liver (Grunnet, 1973; Parilla et al., 1974; Corral1 et al., 1976). Moreover, genetic variation of this isozyme in human livers has been recently reported (Harada et al., 1978), and this polymorphism has been proposed as the molecular basis for individual and racial differences in alcohol sensitivity (Goedde et al., 1979). Consequently, genetic analyses of mitochondria1 AHD are of particular significance to studies on the genetic control of alcohol metabolism in mammals. In summary, this report confirms previous studies which demonstrated that the genetic locus encoding mitochondrial aldehyde dehydrogenase in the mouse (Ahd-1) is on chromosome 4 (Holmes, 1978b), and positions the gene with respect to b (brown), Pgrn-2 (encoding phosphoglucomutase B) and Gpd-1 (encoding the liver and kidney isozyme of hexose-6-phosphate dehydrogenase). In addition, the distribution of the 2-allelic phenotypes for this isozyme has been examined among 43 in- bred strains of mice.  相似文献   

14.
Three polymorphic loci have been identified in the prairie vole, Microtus ochrogaster. Together they control a group of plasma esterases which can be separated using starch gel electrophoresis. A structural locus, Es-1, produces an enzyme which from genetic evidence appears to be a dimer. The allele Es-1 a produces a wholly active subunit, and homozygotes give a single enzyme band. The product of the second allele, Es-1 o, cannot form active enzyme on its own but will dimerize with the Es-1 a subunit, giving a hybrid enzyme with a slower electrophoretic mobility than the pure Es-1 a enzyme. The third allele, Es-1 , has no detectable product. A second structural locus, Es-2, is linked to Es-1. The allele Es-2 a produces a single enzyme band, but the second allele Es-2 has no detectable product. A modifier locus, Me, changes the mobility of the Es-1 enzymes. Me f is dominant over me s, and in homozygotes for me s the mobility is reduced.This work was supported by National Science Foundation Grant GB6273.This is contribution No. 869 from that Department.  相似文献   

15.
Glutamic-pyruvic transaminase (GPT, E.C. 2.6.1.2) from 18 inbred strains of mice was subjected to starch gel electrophoresis. Two electrophoretic phenotypes were observed: a fast-migrating pattern in 16 strains and a slower-migrating pattern in two strains. A comparison of electrophoretic patterns of F1 and backcross progeny of two strains of mice showed that the inheritance of GPT is autosomal with two codominant alleles. The genetic locus for GPT is designated Gpt-1, and its two alleles are designated Gpt-1 a and Gpt-1 b to represent the fast-migrating (A) and slow-migrating (B) patterns. The GPT was expressed in 11 tissues with different amounts of enzyme activity. Developmental studies of GPT activity in liver showed that between 5 and 12 days after birth the mean activity was 10 units/g protein. Between 12 and 19 days, a dramatic rise in activity occurred and adult values of 300 units/g protein were reached by 26 days.This research was supported by The National Foundation (CRBS-258) and the National Institutes of Health (GM15253).Preliminary results were reported at the Annual Meeting of the American Society of Human Genetics, October 11–14, 1972, in Philadelphia.R. P. D. is an investigator of the Howard Hughes Medical Institute.  相似文献   

16.
Starch gel electrophoresis and histochemical staining with l-leucyl-l-tyrosine have revealed genetic variation for dipeptidase in Rattus norvegicus. The tissue distribution, substrate specificity, and heterozygous expression as a monmeric protein suggest homology of the variant peptidase to human PEP-C and mouse Pep-3 (Dip-1). We propose Peptidase-3 (Pep-3) as a name for this autosomal locus in the rat. The allele responsible for slower (less anodal) electrophoretic migration is designated Pep-3 a and is characteristic of strain ACI/Pit. A faster (more anodal) electrophoretic mobility is the product of the Pep-3 b allele in strain F344/Pit. Twenty-five additional inbred strains carry Pep-3 a and 16 others carry Pep-3 b . Wild rats trapped in Pittsburgh were polymorphic for this locus. Alleles at Pep-3 segregated independently of c (linkage group I), a (linkage group IV), RT2 and Es-1 (linkage group V), h (linkage group VI), and RTI (linkage group VIII).  相似文献   

17.
Odc-rs5 was previously identified as a complex locus closely linked to the Igk complex on mouse Chromosome (Chr) 6 and comprising at least five copies of a sequence related to the mRNA encoding ornithine decarboxylase (ODC) in the genomes of mice of some inbred strains and at least seven copies in others (Richards-Smith and Elliott, Mammalian Genome 2: 215, 1992). In the present study, Odc-rs5 was shown to be composed of at least seven copies of the ODC sequence in both the Odc-rs5 a and Odc-rs5 b haplotypes. Based upon the distribution of DNA restriction fragments (RFs) that had previously been associated with Odc-rs5 a or Odc-rs5 b among 42 mice of inbred laboratory strains having various haplotypes at Igk and in mice of two congenic strains [B6.PL-Ly-2 a, Ly-3 a(75NS)/Cy and B6.PL-Ly-2 a, Ly-3 a(85NS)/Cy] and a backcross-derived stock (NAK) known to be recombinant within Igk, a fine structure map of Odc-rs5 was deduced relative to Igk and more distal loci. Odc-rs5-derived RFs were located to three distinct regions within and/or distal to Igk and to a fourth site between (Ly-3, Ly-2) and Raf-1. Additionally, DNAs from 19 mice of inbred strains and random-bred stocks derived from wild progenitors trapped at various locations were analyzed and found to exhibit an unexpected variety of combinations of RFs associated with the two Odc-rs5 haplotypes most frequently observed among inbred laboratory strains of mice.  相似文献   

18.
The segregation of rat esterases controlled by loci residing in linkage group V (LGV) has been studied in two backcross series, (LEW/Han × BN/Han)F1 × LEW/Han and (LEW/Han × LE/Han)F1 × LEW/Han. Es-14 (formerly Es-Si) was shown to be closely linked to Es-1. A new esterase locus, Es-15, was described which codes for a liver isozyme. The distribution pattern of three alleles at the Es-15 locus is presented for 52 independent inbred strains. Close linkage of Es-15 to Es-14 and to Es-1 was established, proposing the following gene order: [Es-2, Es-10]—[ES-1, ES-14, ES-15]. The esterase loci on LGV are thus separated into two gene clusters, cluster 1 and cluster 2. These conclusions are supported by the strain distribution patterns of the two RI strain series, LXB and DXE.Otto von Deimling was supported by the Deutsche Forschungsgemeinschaft (De 315/2-1, communication No. 56).  相似文献   

19.
Genetic variants were found at two loci for pancreatic proteinase in mice. The Prt-1 locus contains a pair of allelic genes, Prt-1 a and Prt-1 b , ad the Prt-2 locus contains two codominant allelic genes, Prt-2 a and Prt-2 b .Expression of the two genetic variants of proteinase allowed mice strains used in this study to be classified into three phenotypic classes. Prt-1 b andPrt-2 a were found in most of the Japanese inbred strains, Prt-1 b andPrt-2 a were found in most of the inbred strains imported from the United States, and, furthermore, Prt-1 b and Prt-2 b were present in Japanese feral-origin mice strains. Prt-1, Prt-2, and Amy-2 loci did not belong to the same linkage group.  相似文献   

20.
An electrophoretic variant previously reported for the stomach isozyme of alcohol dehydrogenase (ADH-C2) in inbred strains of Mus musculus (Holmes, 1977) has been used to localize the gene encoding this enzyme (Adh-3) on chromosome 3 near Va (varitint) (9.6 ± 3.6% recombinants). Genetic variation of ADH-C2 activity in male and female reproductive tissues among inbred strains and Harwell linkage testing stocks was also observed. Reproductive tissue ADH-C2 phenotypes were inherited in a normal Mendelian fashion among F2 progeny of an F1 (LII × C57BL/Go) × C57BL/Go backcross as though controlled by a single cis-acting regulator locus (designated Adt-1) with two alleles: Adt-1 a (presence of ADH-C2) and Adt-1 b (absence or low activity of ADH-C2). No recombinants were observed among 73 progeny or among 13 inbred strains and six Harwell linkage testing stocks of mice, indicating that Adh-3 and Adt-1 are closely linked or identical genes. A single recombinant phenotype was observed in Peru-Coppock mice, suggesting that they are separate genes. Ontogenetic analyses demonstrated that ADH-B2 is present throughout development from late fetal stages in stomach, liver, and kidney; similar results were found for ADH-C2 in developing kidney and stomach extracts, whereas ADH-A2 exhibited high activity in liver extracts after 3 weeks of age in both sexes and in male kidney extracts after 6 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号