首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4 T cells are important for anti-tumor immune responses. Aside from their role in the activation of CD8 T cells, CD4 T cells also mediate anti-tumor immune responses by recruiting innate immune effectors into the tumor microenvironment. Thus, the search for strategies to boost CD4 T cell immunity is an active area of research. Our goal in this study was to identify HLA-DR epitopes of carcinoembryonic antigen (CEA), a commonly over-expressed tumor antigen. HLA-DR epitopes of CEA were identified using the epitope prediction program, PIC (predicted IC50) and tested using in vitro HLA-DR binding assays. Following CEA epitope confirmation, IFN-γ ELIspot assays were used to detect existing immunity against the HLA-DR epitope panel of CEA in breast and ovarian cancer patients. In vitro generated peptide-specific CD4 T cells were used to determine whether the epitopes are naturally processed from CEA protein. Forty-three epitopes of CEA were predicted, 15 of which had high binding affinity for 8 or more common HLA-DR molecules. A degenerate pool of four, HLA-DR restricted 15 amino acid epitopes (CEA.24, CEA.176/354, CEA.488, and CEA.653) consisting of two novel epitopes (CEA.24 and CEA.488) was identified against which 40% of breast and ovarian cancer patients had pre-existent T cell immunity. All four epitopes are naturally processed by antigen-presenting cells. Hardy–Weinberg analysis showed that the pool is useful in ~94% of patients. Patients with breast or ovarian cancer demonstrate pre-existent immune responses to the tumor antigen CEA. The degenerate pool of CEA peptides may be useful for augmenting CD4 T cell immunity.  相似文献   

2.
NY-ESO-1 is frequently expressed in epithelial ovarian cancer (EOC) and elicits spontaneous humoral and cellular immune responses in a proportion of EOC patients. The identification of NY-ESO-1 peptide epitopes with dual HLA-class I and class II specificities might be useful in vaccination strategies for generating cognate CD4+ T cell help to augment CD8+ T cell responses. Here, we describe two novel NY-ESO-1-derived MHC class I epitopes from EOC patients with spontaneous humoral immune response to NY-ESO-1. CD8+ T cells derived from NY-ESO-1 seropositive EOC patients were presensitized with a recombinant adenovirus encoding NY-ESO-1or pooled overlapping peptides. These epitopes, ESO127-136 presented by HLA-A68 molecule, and ESO127-135 restricted by HLA-Cw15 allele, are located within ESO119-143, a promiscuous HLA-class II region containing epitopes that bind to multiple HLA-DR alleles. The novel epitopes were naturally processed by APC or naturally presented by tumor cell lines. In addition, these epitopes induced NY-ESO-1-specific CTL in NY-ESO-1 seropositive EOC patients. Together, the results indicate that ESO119-143 epitope has dual HLA classes I and II specificities, and represents a potential vaccine candidate in a large number of cancer patients.  相似文献   

3.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

4.
Pancreatic carcinoma is a very aggressive disease with dismal prognosis. Although evidences for tumor-specific T cell immunity exist, factors related to tumor microenvironment and the presence of immunosuppressive cytokines in patients' sera have been related to its aggressive behavior. Carcinoembryonic Ag (CEA) is overexpressed in 80-90% of pancreatic carcinomas and contains epitopes recognized by CD4(+) T cells. The aim of this study was to evaluate the extent of cancer-immune surveillance and immune suppression in pancreatic carcinoma patients by comparing the anti-CEA and antiviral CD4(+) T cell immunity. CD4(+) T cells from 23 normal donors and 44 patients undergoing surgical resection were tested for recognition of peptides corresponding to CEA and viral naturally processed promiscuous epitopes by proliferation and cytokine release assays. Anti-CEA CD4(+) T cell immunity was present in a significantly higher number of normal donors than pancreatic cancer patients. Importantly, whereas CD4(+) T cells from normal donors produced mainly GM-CSF and IFN-gamma, CD4(+) T cells from the patients produced mainly IL-5, demonstrating a skew toward a Th2 type. On the contrary, the extent of antiviral CD4(+) T cell immunity was comparable between the two groups and showed a Th1 type. The immunohistochemical analysis of tumor-infiltrating lymphocytes showed a significantly higher number of GATA-3(+) compared with T-bet(+) lymphoid cells, supporting a Th2 skew also at the tumor site. Collectively, these results demonstrate that Th2-immune deviation in pancreatic cancer is not generalized but tumor related and suggests that the skew might be possibly due to factor(s) present at the tumor site.  相似文献   

5.
Tumor peptide-based vaccines are more effective when they include tumor-specific Th cell-defined as well as CTL-defined peptides. Presently, two overlapping wild-type sequences (wt) p53 helper peptides, p53(108-122) and p53(110-124), have been identified as HLA-DR1- and/or HLA-DR4-restricted epitopes. These HLA-DR alleles are expressed by approximately 35% of subjects with cancer. To identify Th cell-defined wt p53 peptides suitable for use on the remaining subject population, a dendritic cell (DC)-based coculture system was developed. CD4+ T cells isolated from PBMC obtained from HLA-DR4- normal donors were stimulated ex vivo with autologous DC transfected with wt p53 or mutant p53 cDNA. Reactivity of T cells was tested in ELISPOT IFN-gamma assays against DC pulsed individually with a panel of algorithm-predicted, multiple HLA-DR-binding wt p53 peptides. The wt p53(25-35) peptide was identified as capable of inducing and being recognized by CD4+ T cells in association, at a minimum, with HLA-DR7 and -DR11 molecules, each of which is expressed by approximately 15% of the population. In addition, the presence of anti-p53(25-35) CD4+ Th cells was shown to enhance the in vitro generation/expansion of HLA-A2-restricted, anti-wt p53(264-272) CD8+ T cells, which from one donor were initially "nonresponsive" to the wt p53(264-272) peptide. The wt p53(25-35) peptide has attributes of a naturally presented Th cell-defined peptide, which could be incorporated into antitumor vaccines applicable to a broader population of subjects for whom a wt p53 helper peptide is presently unavailable, as well as used for monitoring anti-p53 Th cell activity in cancer subjects receiving p53-based immunotherapy.  相似文献   

6.
Kallikrein (KLK)4 is a recently described member of the tissue kallikrein gene family that is specifically expressed in normal and prostate tumor tissues. The tissue-specific expression profile of this molecule suggests that it might be useful as a vaccine candidate against prostate cancer. To examine the presence of CD4 T cells specific for KLK4 in PBMC of normal individuals, a peptide-based in vitro stimulation protocol was developed that uses overlapping KLK4-derived peptides spanning the majority of the KLK4 protein. Using this methodology, three naturally processed CD4 epitopes derived from the KLK4 sequence are identified. These epitopes are restricted by HLA-DRB1*0404, HLA-DRB1*0701, and HLA-DPB1*0401 class II alleles. CD4 T cell clones specific for these epitopes are shown to efficiently and specifically recognize both recombinant KLK4 protein and lysates from prostate tumor cell lines virally infected to express KLK4. CD4 T cells specific for these KLK4 epitopes are shown to exist in PBMC from multiple male donors that express the relevant class II alleles, indicating that a CD4 T cell repertoire specific for KLK4 is present and potentially expandable in prostate cancer patients. The demonstration that KLK4-specific CD4 T cells exist in the peripheral circulation of normal male donors and the identification of naturally processed KLK4-derived CD4 T cell epitopes support the use of KLK4 in whole gene-, protein-, or peptide-based vaccine strategies against prostate cancer. Furthermore, the identification of naturally processed KLK4-derived epitopes provides valuable tools for monitoring preexisting and vaccine-induced responses to this molecule.  相似文献   

7.
Cellular immune responses to the hepatitis B virus polymerase   总被引:14,自引:0,他引:14  
CD4 T cells play an important role in hepatitis B virus (HBV) infection by secretion of Th1 cytokines that down-regulate HBV replication, and by promoting CD8 T cell and B cell responses. We have identified and characterized 10 CD4 T cell epitopes within polymerase and used them to analyze the immunological effects of long-term antiviral therapy as compared with spontaneous recovery from HBV infection. Candidate epitopes were tested for binding to 14 HLA-DR molecules and in IFN-gamma ELISPOT and cytotoxicity assays using peripheral blood lymphocytes from 66 HBV-infected patients and 16 uninfected controls. All 10 epitopes bound with high affinity to the most prevalent HLA-DR Ags, were conserved among HBV genomes, and induced IFN-gamma responses from HBV-specific CD4+ T cells. Several epitopes contained nested MHC class I motifs and stimulated HBV-specific IFN-gamma production and cytotoxicity of CD8+ T cells. HBV polymerase-specific responses were more frequent during acute, self-limited hepatitis and after recovery (12 of 18; 67%) than during chronic hepatitis (16 of 48 (33%); p=0.02). Antiviral therapy of chronic patients restored HBV polymerase and core-specific T cell responses during the first year of treatment, but thereafter, responses decreased and, after 3 years, were no more frequent than in untreated patients. Decreased T cell responsiveness during prolonged therapy was associated with increased prevalence of lamivudine-resistant HBV mutants and increased HBV titers. The data provide a rationale for the combination of antiviral and immunostimulatory therapy. These newly described HBV polymerase epitopes could be a valuable component of a therapeutic vaccine for a large and ethnically diverse patient population.  相似文献   

8.
Proteins encoded by genes of the SSX family are specifically expressed in tumors and are therefore relevant targets for cancer immunotherapy. One of the first identified family members, SSX-1, is expressed in a large fraction of synovial sarcomas as a fusion protein together with the product of the SYT gene. In addition, the full-length SSX-1 antigen is frequently expressed in tumors of several other histological types such as sarcoma, melanoma, hepatocellular carcinoma, ovarian cancer and myeloma. To date, however, SSX-1 specific T cell responses have not been investigated and no SSX-1 derived T cell epitopes have been described. Here, we have assessed the presence of CD4(+) T cells directed against the SSX-1 antigen in circulating lymphocytes of cancer-free individuals. After a single in vitro stimulation with a pool of peptides spanning the entire SSX-1 protein we could detect and isolate SSX-1-specific CD4(+) T cells from 5/5 donors analyzed. SSX-1-specific polyclonal populations isolated from these cultures recognized peptides located in three distinct regions of the protein containing clusters of sequences with significant predicted binding to frequently expressed MHC class II alleles. Characterization of specific clonal CD4(+) T cell populations derived from one donor allowed the identification of several naturally processed epitopes recognized in association with HLA-DR. These data document the existence of a significant repertoire of CD4(+) T cells specific for SSX-1 derived sequences in circulating lymphocytes of any individual that can be exploited for the development of both passive and active immunotherapeutic approaches to control disease evolution in cancer patients.  相似文献   

9.
Purpose The carcinoembryonic antigen (CEA) is extensively expressed on the vast majority of colorectal, gastric, and pancreatic carcinomas, and, therefore, is a good target for tumor immunotherapy. CD4+ T-helper (Th) cells play a critical role in initiation, regulation, and maintenance of immune responses. In this study, we sought to identify Th epitopes derived from CEA which can induce CEA-specific Th responses. The combined application with cytotoxic T lymphocyte (CTL) epitopes would be more potent than tumor vaccines that primarily activate CTL alone.Methods We utilized a combined approach of using a computer-based algorithm analysis TEPITOPE and in vitro biological analysis to identify Th epitopes in CEA.Results Initial screening of healthy donors showed that all five predicted peptides derived from CEA could induce peptide-specific T-cell proliferation in vitro. We characterized these CEA epitopes by establishing and analyzing peptide-specific T-cell clones. It was shown that CD4+ T-cells specific for the CEA116 epitope can recognize and respond to naturally processed CEA protein and CEA116 epitope can be promiscuously presented by commonly found major histocompatibility complex (MHC) alleles. Furthermore, it was demonstrated that immunization of human leukocyte antigen (HLA)-DR4 transgenic mice with CEA116 peptide elicited antigen-specific Th responses which can recognize the antigenic peptides derived from CEA protein and CEA-positive tumors.Conclusion The MHC class II-restricted epitope CEA116 could be used in the design of peptide-based tumor vaccine against several common cancers expressing CEA.  相似文献   

10.
In acute hepatitis C virus infection, 50 to 70% of patients develop chronic disease. Considering the low rate of spontaneous viral clearance during chronic hepatitis C infection, the first few months of interaction between the patient's immune system and the viral population seem to be crucial in determining the outcome of infection. We previously reported the association between a strong and sustained CD4+ T-cell response to nonstructural protein 3 (NS3) of the hepatitis C virus and a self-limited course of acute hepatitis C infection. In this study, we identify an immunodominant CD4+ T-cell epitope (amino acids 1248 to 1261) that was recognized by the majority (14 of 23) of NS3-specific CD4+ T-cell clones from four of five patients with acute hepatitis C infection. This epitope can be presented to CD4+ T cells by HLA-DR4, -DR11, -DR12, -DR13, and -DR16. HLA-binding studies revealed a high binding affinity for 10 of 13 common HLA-DR alleles. Two additional CD4+ T-cell epitopes, amino acids 1388 to 1407 and amino acids 1450 to 1469, showed a very narrow pattern of binding to individual HLA-DR alleles. Our data suggest that the NS3-specific CD4+ T-cell response in acute hepatitis C infection is dominated by a single, promiscuous peptide epitope which could become a promising candidate for the development of a CD4+ T-cell vaccine.  相似文献   

11.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   

12.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

13.
Most patients with rheumatoid arthritis (RA) express HLA-DR4, HLA-DR1 or HLA-DR10. These alleles share a common amino acid motif in their third hypervariable regions: the shared epitope. In normals and patients with RA, HLA-DR genes exert a major influence on the CD4 alpha beta T-cell repertoire, as shown by studies of AV and BV gene usage and by BV BJ gene usage by peripheral blood CD4 alpha beta T-cells. However, the rheumatoid T-cell repertoire is not entirely under HLA-DR influence, as demonstrated by discrepancies in VB JB gene usage between identical twins discordant for RA and by contraction of the CD4 alpha beta T-cell repertoire in RA patients. Shared epitope positive HLA-DR alleles may shape the T-cell repertoire by presenting self peptides to CD4 T cells in the thymus. Peptides processed from HLA-DR molecules and encompassing the shared epitope may also be presented by HLA-DQ and select CD4 alpha beta T cells in the thymus. Thus, shared epitope-positive alleles impose a frame on the T-cell repertoire. This predisposing frame is further modified (by unknown factors) to obtain the contracted rheumatoid repertoire.  相似文献   

14.
Because of the wide distribution of the survivin Ag in a variety of tumors, we have investigated the survivin-specific CD4+ T cell response in healthy donors and cancer patients. Screening of the entire sequence of survivin for HLA class II binding led to the identification of seven HLA-DR promiscuous peptides, including four HLA-DP4 peptides. All of the peptides were able to prime in vitro CD4+ T cells of eight different healthy donors. The peptide-specific T cell lines were stimulated by dendritic cells loaded with the recombinant protein or with the lysates of tumor cells. The high frequency of responders (i.e., immunoprevalence) was provided by a wide reactivity of multiple peptides. Six peptides were T cell stimulating in at least half of the donors and were close to CD8+ T cell epitopes. HLA-DR molecules were more frequently involved in T cell stimulation than were HLA-DP4 molecules, and hence immunoprevalence relies mainly on HLA-DR promiscuity in the survivin Ag. In two cancer patients a spontaneous CD4+ T cell response specific for one of these peptides was also observed. Based on these observations, the tumor-shared survivin does not appear to be the target of immune tolerance in healthy donors and cancer patients and is a relevant candidate for cancer vaccine.  相似文献   

15.
CD4(+) Th cells play an important role in the induction and maintenance of adequate CD8(+) T cell-mediated antitumor responses. Therefore, identification of MHC class II-restricted tumor antigenic epitopes is of major importance for the development of effective immunotherapies with synthetic peptides. CAMEL and NY-ESO-ORF2 are tumor Ags translated in an alternative open reading frame from the highly homologous LAGE-1 and NY-ESO-1 genes, respectively. In this study, we investigated whether CD4(+) T cell responses could be induced in vitro by autologous, mature dendritic cells pulsed with recombinant CAMEL protein. The data show efficient induction of CAMEL-specific CD4(+) T cells with mixed Th1/Th2 phenotype in two healthy donors. Isolation of CD4(+) T cell clones from the T cell cultures of both donors led to the identification of four naturally processed HLA-DR-binding CAMEL epitopes: CAMEL(1-20), CAMEL(14-33), CAMEL(46-65), and CAMEL(81-102). Two peptides (CAMEL(1-20) and CAMEL(14-33)) also contain previously identified HLA class I-binding CD8(+) T cell epitopes shared by CAMEL and NY-ESO-ORF2 and are therefore interesting tools to explore for immunotherapy. Furthermore, two CD4(+) T cell clones that recognized the CAMEL(14-33) peptide with similar affinities were shown to differ in recognition of tumor cells. These CD4(+) T cell clones recognized the same minimal epitope and expressed similar levels of adhesion, costimulatory, and inhibitory molecules. TCR analysis demonstrated that these clones expressed identical TCR beta-chains, but different complementarity-determining region 3 loops of the TCR alpha-chains. Introduction of the TCRs into proper recipient cells should reveal whether the different complementarity-determining region 3 alpha loops are important for tumor cell recognition.  相似文献   

16.
HER-2/neu peptides recognized in the context of HLA-DR molecules by CD4(+) Th lymphocytes on antigen-presenting cells have been identified. In this report, we demonstrate for the first time that HER-2/neu helper epitopes are also expressed on the surface of metastatic breast, colorectal and pancreatic carcinomas. Peripheral blood mononuclear cells from an HLA-DR4 healthy donor were used to induce HER-2/neu peptide-specific CD4(+) T cell clones by in vitro immunization with HER-2/neu peptide (884-899)-pulsed autologous dendritic cells (DCs). Strong proliferation and significant levels of IFN-gamma were induced by the CD4(+) T cell clones in response to specific stimulation with autologous DCs loaded with HER-2(884-899). Furthermore, these clones also recognized HER-2/neu(+) tumor cell lines, and tumor cells from breast, colorectal and pancreatic adenocarcinomas induced to express HLA-DR4, but also the HLA-DR4(+) melanoma cell line FM3 transfected to express HER-2/neu. The recognition of tumor cells was strongly inhibited by an anti-HLA-DR mAb. Taken altogether, we provide novel information for the role of HER-2(884-899) as a naturally processed epitope expressed by breast, colorectal and pancreatic carcinomas and the capacity of HER-2/neu protein to follow the endogenous class II processing pathway. Our results suggest that HER-2(884-899) might be attractive for broadly applicable vaccines and may prove useful for adoptive immunotherapy designed for breast, colorectal and pancreatic carcinomas.  相似文献   

17.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

18.
Mixed connective tissue disease (MCTD) is a systemic autoimmune disease with significant morbidity and premature mortality of unknown pathogenesis. In the present study, we characterized U1-70-kDa small nuclear ribonucleoprotein (70-kDa) autoantigen-specific T cells in a new murine model of MCTD. These studies defined 70-kDa-reactive T cell Ag fine specificities and TCR gene usage in this model. Similar to patients with MCTD, CD4(+) T cells can be readily identified from 70-kDa/U1-RNA-immunized HLA-DR4-transgenic mice. Using both freshly isolated CD4(+) T cells from spleen and lung, and T cell lines, we found that the majority of these T cells were directed against antigenic peptides residing within the RNA-binding domain of 70 kDa. We also found that TCR-beta (TRB) V usage was highly restricted among 70-kDa-reactive T cells, which selectively used TRBV subgroups 1, 2, 6, 8.1, 8.2, and 8.3, and that the TRB CDR3 had conserved sequence motifs which were shared across different TRBV subgroups. Finally, we found that the TRBV and CDR3 regions used by both murine and human 70-kDa-specific CD4(+) T cells were homologous. Thus, T cell recognition of the 70-kDa autoantigen by HLA-DR4-transgenic mice is focused on a limited number of T cell epitopes residing primarily within the RBD of the molecule, using a restricted number of TRBV and CDR3 motifs that are homologous to T cells isolated from MCTD patients.  相似文献   

19.
Tumor Ag NY-ESO-1 is an attractive target for immunotherapy of cancer, since both CD8(+) CTL and CD4(+) Th cells against NY-ESO-1 have been described. Moreover, NY-ESO-1 as well as the highly homologous tumor Ag LAGE-1 are broadly expressed in various tumor types. Interestingly, the NY-ESO-1 and LAGE-1 genes also encode for proteins translated in an alternative open reading frame. These alternatively translated NY-ESO-ORF2 and CAMEL proteins, derived from the NY-ESO-1 and LAGE-1 genes, respectively, have been demonstrated to be immunogenic, since CTL specific for these proteins have been isolated from melanoma patients. In this study a panel of advanced melanoma patients was screened for the presence of Th cells specific for the alternatively translated tumor Ags NY-ESO-ORF2 and CAMEL. PBMC of melanoma patients were stimulated for 4 days with mixes of overlapping peptides covering the entire NY-ESO-ORF2 and CAMEL protein sequences and were tested for the release of type 1 (IFN-gamma) and type 2 (IL-13) cytokines in ELISPOT assays. In three of 15 patients, T cells specific for two CAMEL peptides (CAMEL(71-92) and CAMEL(81-102)) could be detected. From one of these patients, CD4(+) T cell clones specific for CAMEL(81-102) could be generated. These clones recognized a naturally processed epitope presented in both HLA-DR11 and HLA-DR12 and produced high levels of IL-4, IL-5, and IL-13. In conclusion, this study shows the presence of Th cells specific for the alternatively translated tumor Ag CAMEL in melanoma patients and is the first report that describes the isolation of tumor Ag-specific CD4(+) Th 2 clones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号