首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buckman J  Miller SM 《Biochemistry》2000,39(34):10521-10531
The transient kinetics of the reaction of the estrogen binding protein (EBP1) from Candida albicans in which hydride is transferred from NADPH to trans-2-hexenal (HXL) in two half-reactions were analyzed using UV-visible spectrophotometric and fluorometric stopped-flow techniques. The simplest model of the first half-reaction involves four steps including very rapid, tight binding (K(d) 相似文献   

2.
X Wu  B A Palfey  V V Mossine  V M Monnier 《Biochemistry》2001,40(43):12886-12895
Amadoriase is a flavoenzyme that catalyzes the oxidative deglycation of Amadori products (fructosyl amino acids or aliphatic amines) to yield free amine, glucosone, and hydrogen peroxide. The mechanism of action of amadoriase I from Aspergillus sp. has been investigated by stopped-flow kinetic studies using fructosyl propylamine and O(2) as substrates in 10 mM Tris HCl, pH 7.9, 4 degrees C. Using both substrate analogues and fast kinetic techniques, the active configuration of the substrate was found to be the beta-pyranose form. Stopped-flow studies showed that the reductive half-reaction is triphasic and generates intermediates that absorb at long wavelengths and is consistent either with (i) the reaction of the substrate with the flavin followed by iminium deprotonation or hydrolysis and then product release or with (ii) the formation of flavin reduction intermediates (carbanion equivalents or adducts), followed by product release. The rate of product release after flavin reduction is lower than the aerobic turnover rate, 14.4 s(-1), suggesting that it is not involved in the catalytic cycle and that reoxidation of the reduced enzyme occurs in the E(red)-product complex. In the oxidative half-reaction, the reduced flavin is oxidized by O(2) in a single phase. The observed rate constant has a linear dependence on oxygen concentration, giving a bimolecular rate constant of 4.9 x 10(4) M(-1) s(-1) in the absence of product, and 3.6 x 10(4) M(-1) s(-1) when the product is bound. The redox potentials of amadoriase have been measured at pH 7.0, 25 degrees, giving values of +48 and -52 mV for the oxidized enzyme/anionic semiquinone and anionic semiquinone/reduced enzyme couples, respectively.  相似文献   

3.
The role of the active site aspartate base in the aminotransferase mechanism of the copper amine oxidase from the yeast Hansenula polymorpha has been probed by site-directed mutagenesis. The D319E mutant catalyzes the oxidation of methylamine and phenethylamine, but not that of benzylamine. kcat/Km for methylamine is found to be 80-fold reduced compared to that of the wild type. Viscosogen and substrate and solvent deuteration have no effect on this parameter for D319E, which is suggestive of limitation of kcat/Km by a conformational change. This conformational change is proposed to be the movement of the cofactor into a productive orientation upon the binding of substrate. In the absence of substrate, a flipped cofactor orientation is likely, on the basis of resonance Raman evidence that the C5 carbonyl of the cofactor is less solvent accessible than the C3 hydrogen. kcat for D319E methylamine oxidase is reduced 200-fold compared to that of the wild type and is unaffected by substrate deuteration, but displays a substantial solvent isotope effect. A 428 nm absorbance is evident under conditions of saturating methylamine and oxygen with D319E. The D319N mutant is observed to produce a similar absorbance at 430 nm when treated with ammonia despite the fact that this mutant has no amine oxidase activity. Resonance Raman spectroscopy indicates the formation of a covalent ammonia adduct and identifies it as the deprotonated iminoquinone. In contrast, when the D319E mutant is reacted with ammonia, it gives predominantly a 340-350 nm species. This absorbance is ascribed to a localization of the cofactor oxyanion induced by binding of the cation at the active site and not to covalent adduct formation. Resonance Raman spectroscopic examination of the steady state species of D319E methylamine oxidation, in combination with the kinetic data, indicates that the 428 nm species is the deprotonated iminoquinone produced upon reoxidation of the reduced cofactor. A model is proposed in which a central role of the active site base is to position the free cofactor and several enzyme intermediates for optimal activity.  相似文献   

4.
Arscott LD  Veine DM  Williams CH 《Biochemistry》2000,39(16):4711-4721
Glutathione reductase catalyzes the reduction of glutathione disulfide by NADPH. The FAD of the reductase is reduced by NADPH, and reducing equivalents are passed to a redox-active disulfide to complete the first half-reaction. The nascent dithiol of two-electron reduced enzyme (EH(2)) interchanges with glutathione disulfide forming two molecules of glutathione in the second half-reaction. It has long been assumed that a mixed disulfide (MDS) between one of the nascent thiols and glutathione is an intermediate in this reaction. In addition to the nascent dithiol composed of Cys(45) and Cys(50), the enzyme contains an acid catalyst, His(456), having a pK(a) of 9.2 that protonates the first glutathione (residue numbers refer to the yeast enzyme sequence). Reduction of yeast glutathione reductase by glutathione and reoxidation of EH(2) by glutathione disulfide indicate that the mixed disulfide accumulates, in particular, at low pH. The reaction of glutathione disulfide with EH(2) is stoichiometric in the absence of an excess of glutathione. The equilibrium position among E(ox), MDS, and EH(2) is determined by the glutathione concentration and is not markedly influenced by pH between 6.2 and 8.5. The mixed disulfide is the principal product in the reaction of glutathione with oxidized enzyme (E(ox)) at pH 6. 2. Its spectrum can be distinguished from that of EH(2) by a slightly lower thiolate (Cys(50))-FAD charge-transfer absorbance at 540 nm. The high GSH/GSSG ratio in the cytoplasm dictates that the mixed disulfide will be the major enzyme species.  相似文献   

5.
Juda GA  Shepard EM  Elmore BO  Dooley DM 《Biochemistry》2006,45(29):8788-8800
Copper amine oxidases (CuAOs) catalyze the oxidative deamination of primary amines operating through a ping-pong bi-bi mechanism. In this work, azide (an exogenous monodentate ligand) was used to probe the role of copper during the oxidative half-reaction of CuAO catalysis. The effects of azide on both the reductive and oxidative half-reactions of pea seedling amine oxidase (PSAO), the recombinant human kidney diamine oxidase (rhDAO), Arthrobacter globiformis amine oxidase (AGAO), and Pichia pastoris amine oxidase (PPLO) have been examined. For the reductive half-reaction, defined as the oxidation of amine substrate to an aldehyde, azide was discovered to exhibit either noncompetitive or competitive inhibition with respect to the amine, depending on the enzyme source. With regard to the oxidative half-reaction, defined as the reoxidation of the enzyme via reduction of O(2) to H(2)O(2), azide has been determined to exhibit competitive inhibition with respect to O(2) in PSAO with a calculated K(i) value that is in excellent agreement with the experimentally determined K(d) value for the Cu(II)-N(3)(-) complex. Azide was found to exhibit mixed-type/partially competitive inhibition with respect to substrate O(2) in rhDAO, with an apparent K(i) that is similar to the K(d) value for the Cu(II)-N(3)(-) complex. The competitive inhibition for PSAO and the partially competitive inhibition for rhDAO are consistent with O(2) interacting directly with copper during enzymatic reoxidation. For the enzymes AGAO and PPLO, pure noncompetitive and mixed-type/partially competitive inhibition is observed. K(i) values for reductive and oxidative half-reactions are equivalent and are lower than measured K(d) values for the Cu(II)-N(3)(-) complexes in oxidized and substrate-reduced forms of these enzymes. Given these observations, it appears that substantial inhibition of the reductive half-reaction occurs at the concentrations of azide used for the oxidative half-reaction experiments, thereby complicating kinetic interpretation. At this time, the data do not permit us to distinguish between two possibilities: (1) inhibition by azide with respect to O(2) is intrinsically competitive in CuAOs, but this effect cannot always be deconvolved experimentally from the effects of azide on the reductive half-reaction; or (2) CuAOs differ in some steps of their reoxidation mechanisms.  相似文献   

6.
Zhao G  Jorns MS 《Biochemistry》2006,45(19):5985-5992
Monomeric sarcosine oxidase is a flavoenzyme that catalyzes the oxidation of the methyl group in sarcosine (N-methylglycine). Rapid reaction kinetic studies under anaerobic conditions at pH 8.0 show that the enzyme forms a charge transfer Michaelis complex with sarcosine (E-FAD(ox).sarcosine) that exhibits an intense long-wavelength absorption band (lambda(max) = 516 nm, epsilon(516) = 4800 M(-)(1) cm(-)(1)). Since charge transfer interaction with sarcosine as donor is possible only with the anionic form of the amino acid, the results indicate that the pK(a) of enzyme-bound sarcosine must be considerably lower than the free amino acid (pK(a) = 10.0). No redox intermediate is detectable during sarcosine oxidation, as judged by the isosbestic spectral course observed for conversion of E-FAD(ox).sarcosine to reduced enzyme at 25 or 5 degrees C. The limiting rate of the reductive half-reaction at 25 degrees C (140 +/- 3 s(-)(1)) is slightly faster than turnover (117 +/- 3 s(-)(1)). The kinetics of formation of the Michaelis charge transfer complex can be directly monitored at 5 degrees C where the reduction rate is 4.5-fold slower and complex stability is increased 2-fold. The observed rate of complex formation exhibits a hyperbolic dependence on sarcosine concentration with a finite Y-intercept, consistent with a mechanism involving formation of an initial complex followed by isomerization to yield a more stable complex. Similar results are obtained for charge transfer complex formation with methylthioacetate. The observed kinetics are consistent with structural studies which show that a conformational change occurs upon binding of methylthioacetate and other competitive inhibitors.  相似文献   

7.
The photosynthetic bacterium Rhodobacter capsulatus contains a ferredoxin (flavodoxin)-NADP(H) oxidoreductase (FPR) that catalyzes electron transfer between NADP(H) and ferredoxin or flavodoxin. The structure of the enzyme, determined by X-ray crystallography, contains two domains harboring the FAD and NADP(H) binding sites, as is typical of the FPR structural family. The FAD molecule is in a hairpin conformation in which stacking interactions can be established between the dimethylisoalloxazine and adenine moieties. The midpoint redox potentials of the various transitions undergone by R. capsulatus FPR were similar to those reported for their counterparts involved in oxygenic photosynthesis, but its catalytic activity is orders of magnitude lower (1-2 s(-)(1) versus 200-500 s(-)(1)) as is true for most of its prokaryotic homologues. To identify the mechanistic basis for the slow turnover in the bacterial enzymes, we dissected the R. capsulatus FPR reaction into hydride transfer and electron transfer steps, and determined their rates using stopped-flow methods. Hydride exchange between the enzyme and NADP(H) occurred at 30-150 s(-)(1), indicating that this half-reaction does not limit FPR activity. In contrast, electron transfer to flavodoxin proceeds at 2.7 s(-)(1), in the range of steady-state catalysis. Flavodoxin semiquinone was a better electron acceptor for FPR than oxidized flavodoxin under both single turnover and steady-state conditions. The results indicate that one-electron reduction of oxidized flavodoxin limits the enzyme activity in vitro, and support the notion that flavodoxin oscillates between the semiquinone and fully reduced states when FPR operates in vivo.  相似文献   

8.
Hirota S  Iwamoto T  Tanizawa K  Adachi O  Yamauchi O 《Biochemistry》1999,38(43):14256-14263
Carbon monoxide complexes have been generated for copper/topa quinone (TPQ)-containing amine oxidases from Arthrobactor globiformis (AGAO) and Aspergillus niger (AO-I) and characterized by various spectroscopic measurements. Addition of CO to AGAO anaerobically reduced with its substrate 2-phenylethylamine led to a slight increase of absorption bands at 440 and 470 nm derived from the semiquinone form (TPQ(sq)) of the TPQ cofactor, concomitantly giving rise to new CO-related absorption bands at 334 and 434 nm. The intensity of the TPQ(sq) radical EPR signal at g = 2.004 also increased in the presence of CO, while its hyperfine coupling structure was affected insignificantly. FT-IR measurements revealed C-O stretching bands (nu(CO)) at 2063 and 2079 cm(-1) for the CO complex of the substrate-reduced AGAO (at 2085 cm(-1) for AO-I), which shifted nearly 100 cm(-1) to lower frequencies upon using (13)C(18)O. Collectively, these results suggest that CO is bound to the Cu(I) ion in the Cu(I)/TPQ(sq) species formed in the reductive half-reaction of amine oxidation, thereby shifting the Cu(II)/aminoresorcinol right arrow over left arrow Cu(I)/semiquinone equilibrium toward the latter. When AGAO was reduced with dithionite, an intermediary form of the enzyme with Cu(II) reduced to Cu(I) but TPQ still in the oxidized state (TPQ(ox)) was produced. Dithionite reduction of AGAO in the presence of CO resulted in the immediate formation of FT-IR bands at 2064 and 2083 cm(-1), which were assigned to the nu(CO) bands of the CO bound to the TPQ(ox) enzyme. The intense 2083 cm(-1) band was then displaced by a new band at 2077 cm(-1), corresponding to the formation of the fully reduced topa. Significant variation of these nu(CO) frequencies indicates that vibrational properties of CO bound to copper amine oxidases are sensitively influenced by the coordination structure of the Cu(I) ion, which may be modulated by the chemical and redox states of the TPQ cofactor.  相似文献   

9.
The kinetic properties of glycine oxidase from Bacillus subtilis were investigated using glycine, sarcosine, and d-proline as substrate. The turnover numbers at saturating substrate and oxygen concentrations were 4.0 s(-1), 4.2 s(-1), and 3.5 s(-1), respectively, with glycine, sarcosine, and D-proline as substrate. Glycine oxidase was converted to a two-electron reduced form upon anaerobic reduction with the individual substrates and its reductive half-reaction was demonstrated to be reversible. The rates of flavin reduction extrapolated to saturating substrate concentration, and under anaerobic conditions, were 166 s(-1), 170 s(-1), and 26 s(-1), respectively, with glycine, sarcosine, and D-proline as substrate. The rate of reoxidation of reduced glycine oxidase with oxygen in the absence of product (extrapolated rate approximately 3 x 10(4) M(-1) x s(-1)) was too slow to account for catalysis and thus reoxidation started from the reduced enzyme:imino acid complex. The kinetic data are compatible with a ternary complex sequential mechanism in which the rate of product dissociation from the reoxidized enzyme form represents the rate-limiting step. Although glycine oxidase and D-amino acid oxidase differ in substrate specificity and amino acid sequence, the kinetic mechanism of glycine oxidase is similar to that determined for mammalian D-amino acid oxidase on neutral D-amino acids, further supporting a close similarity between these two amine oxidases.  相似文献   

10.
Human methionine synthase reductase (MSR) is a key enzyme in folate and methionine metabolism as it reactivates the catalytically inert cob(II)alamin form of methionine synthase (MS). Electron transfer from MSR to the cob(II)alamin cofactor coupled with methyl transfer from S-adenosyl methionine returns MS to the active methylcob(III)alamin state. MSR contains stoichiometric amounts of FAD and FMN, which shuttle NADPH-derived electrons to the MS cob(II)alamin cofactor. Herein, we have investigated the pre-steady state kinetic behavior of the reductive half-reaction of MSR by anaerobic stopped-flow absorbance and fluorescence spectroscopy. Photodiode array and single-wavelength spectroscopy performed on both full-length MSR and the isolated FAD domain enabled assignment of observed kinetic phases to mechanistic steps in reduction of the flavins. Under single turnover conditions, reduction of the isolated FAD domain by NADPH occurs in two kinetically resolved steps: a rapid (120 s(-1)) phase, characterized by the formation of a charge-transfer complex between oxidized FAD and NADPH, is followed by a slower (20 s(-1)) phase involving flavin reduction. These two kinetic phases are also observed for reduction of full-length MSR by NADPH, and are followed by two slower and additional kinetic phases (0.2 and 0.016 s(-1)) involving electron transfer between FAD and FMN (thus yielding the disemiquinoid form of MSR) and further reduction of MSR by a second molecule of NADPH. The observed rate constants associated with flavin reduction are dependent hyperbolically on NADPH and [4(R)-2H]NADPH concentration, and the observed primary kinetic isotope effect on this step is 2.2 and 1.7 for the isolated FAD domain and full-length MSR, respectively. Both full-length MSR and the separated FAD domain that have been reduced with dithionite catalyze the reduction of NADP+. The observed rate constant of reverse hydride transfer increases hyperbolically with NADP+ concentration with the FAD domain. The stopped-flow kinetic data, in conjunction with the reported redox potentials of the flavin cofactors for MSR [Wolthers, K. R., Basran, J., Munro, A. W., and Scrutton, N. S. (2003) Biochemistry, 42, 3911-3920], are used to define the mechanism of electron transfer for the reductive half-reaction of MSR. Comparisons are made with similar stopped-flow kinetic studies of the structurally related enzymes cytochrome P450 reductase and nitric oxide synthase.  相似文献   

11.
A procedure for the preparation of the fully reduced Cu(I) form of galactose oxidase, GOase(red), involving reduction of GOase(semi) (or GOase(ox)) with non-coordinating [Ru(NH(3))(6)](2+) (51 mV vs. nhe) is described. Air-free conditions and a two-fold excess of [Ru(NH(3))(6)](2+) give a stable product with no further UV-Vis changes over >1.5 h. Rate constants for the reduction of GOase(semi) (k(f)=860 M(-1) s(-1)) give a first-order [H(+)]-dependence (pK(1a)=7.9), but the reverse process involving [Ru(NH(3))(6)](3+) oxidation of GOase(red) (k(b)=18.6 M(-1) s(-1)) is independent of pH (5.5 to 9.5). The reduction potential E(2)(o)' (vs. nhe) for the GOase(semi)/GOase(red) (i.e. Cu(II)/Cu(I)) couple is 149 mV at pH 7.5, which varies from 160 mV (pH 5.5) to 120 mV (pH 10.5), suggesting pK(1a) (GOase(semi)) and pK(2a) (GOase(red)) acid dissociation constants both involving Tyr-495. It is concluded that pK(2a) is for acid dissociation of uncoordinated H(+)Tyr-495. Consistent with this interpretation rate constants/M(-1) s(-1) for the GOase(semi) Tyr495 Phe variant, k(f)=1.59x10(3) and k(b)=16.1, respectively, are independent of pH and give a reduction potential of 169 mV. Comparisons are made of reduction potentials (E(1)(o)'/mV pH 7.5) for the GOase(ox)/GOase(semi) (i.e. Tyr(.)/Tyr) couple, and are for the Cys228Gly variant (630), for enzyme with N(3)(-) for H(2)O at the substrate binding exogenous site (393), and for apo-protein (570). These compare with previously reported values for the variants Trp290His (730) and Tyr495Phe (450), and together serve to quantify different contributions to the unusually small E(1)(o)' of 400 mV for the Tyr(.)/Tyr couple. At pH 7.5 the reduction potential for the two-equivalent GOase(ox)/GOase(red) couple is calculated to be 275 mV. The rate constant for the reaction of GOase(red) with GOase(ox) is 4.4x10(3) M(-1) s(-1) at pH 7.5.  相似文献   

12.
Argyrou A  Blanchard JS  Palfey BA 《Biochemistry》2002,41(49):14580-14590
Lipoamide dehydrogenase catalyses the NAD(+)-dependent oxidation of the dihydrolipoyl cofactors that are covalently attached to the acyltransferase components of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine reductase multienzyme complexes. It contains a tightly, but noncovalently, bound FAD and a redox-active disulfide, which cycle between the oxidized and reduced forms during catalysis. The mechanism of reduction of the Mycobacterium tuberculosis lipoamide dehydrogenase by NADH and [4S-(2)H]-NADH was studied anaerobically at 4 degrees C and pH 7.5 by stopped-flow spectrophotometry. Three phases of enzyme reduction were observed. The first phase, characterized by a decrease in absorbance at 400-500 nm and an increase in absorbance at 550-700 nm, was fast (k(for) = 1260 s(-)(1), k(rev) = 590 s(-)(1)) and represents the formation of FADH(2).NAD(+), an intermediate that has never been observed before in any wild-type lipoamide dehydrogenase. A primary deuterium kinetic isotope effect [(D)(k(for) + k(rev)) approximately 4.2] was observed on this phase. The second phase, characterized by regain of the absorbance at 400-500 nm, loss of the 550-700 nm absorbance, and gain of 500-550 nm absorbance, was slower (k(obs) = 200 s(-)(1)). This phase represents the intramolecular transfer of electrons from FADH(2) to the redox-active disulfide to generate the anaerobically stable two-electron reduced enzyme, EH(2). The third phase, characterized by a decrease in absorbance at 400-550 nm, represents the formation of the four-electron reduced form of the enzyme, EH(4). The observed rate constant for this phase showed a decreasing NADH concentration dependence, and results from the slow (k(for) = 57 s(-)(1), k(rev) = 128 s(-)(1)) isomerization of EH(2) or slow release of NAD(+) before rapid NADH binding and reaction to form EH(4). The mechanism of oxidation of EH(2) by NAD(+) was also investigated under the same conditions. The 530 nm charge-transfer absorbance of EH(2) shifted to 600 nm upon NAD(+) binding in the dead time of mixing of the stopped-flow instrument and represents formation of the EH(2).NAD(+) complex. This was followed by two phases. The first phase (k(obs) = 750 s(-)(1)), characterized by a small decrease in absorbance at 435 and 458 nm, probably represents limited accumulation of FADH(2).NAD(+). The second phase was characterized by an increase in absorbance at 435 and 458 nm and a decrease in absorbance at 530 and 670 nm. The observed rate constant that describes this phase of approximately 115 s(-)(1) probably represents the overall rate of formation of E(ox) and NADH from EH(2) and NAD(+), and is largely determined by the slower rates of the coupled sequence of reactions preceding flavin oxidation.  相似文献   

13.
Wagner MA  Jorns MS 《Biochemistry》2000,39(30):8825-8829
Monomeric sarcosine oxidase (MSOX) is a flavoenzyme that catalyzes the oxidative demethylation of sarcosine (N-methylglycine) to yield glycine, formaldehyde, and hydrogen peroxide. MSOX can oxidize other secondary amino acids (N-methyl-L-alanine, N-ethylglycine, and L-proline), but N,N-dimethylglycine, a tertiary amine, is not a substrate. N-Methyl-L-alanine is a good alternate substrate, exhibiting a k(cat) value (8700 min(-)(1)) similar to sarcosine (7030 min(-)(1)). Turnover with L-proline (k(cat) = 25 min(-)(1)) at 25 degrees C occurs at less than 1% of the rate observed with sarcosine. MSOX is converted to a two-electron reduced form upon anaerobic reduction with sarcosine or L-proline. No evidence for a spectrally detectable intermediate was obtained in reductive half-reaction studies with L-proline. The reductive half-reaction with L-proline at 4 degrees C exhibited saturation kinetics (k(lim) = 6.0 min(-)(1), K(d) = 260 mM) and other features consistent with a mechanism in which a practically irreversible reduction step (E(ox). S --> E(red).P) with a rate constant, k(lim), is preceded by a rapidly attained equilibrium (K(d)) between free E and the E.S complex. Steady-state kinetic studies with sarcosine and N-methyl-L-alanine in the absence or presence of a dead-end inhibitor (pyrrole-2-carboxylate) indicate that catalysis proceeds via a "modified" ping pong mechanism in which oxygen reacts with E(red).P prior to the dissociation of the imino acid product. In this mechanism, double reciprocal plots will appear nearly parallel (as observed) if the reduction step is nearly irreversible. A polar mechanism, involving formation of a covalent 4a-flavin-substrate adduct is one of several plausible mechanisms for sarcosine oxidation. Thiols are known to form similar 4a-flavin adducts. MSOX does not form a 4a-adduct with thioglycolate but does form a charge-transfer complex that undergoes an unanticipated one-electron-transfer reaction to yield the anionic flavin radical.  相似文献   

14.
M S Brody  R Hille 《Biochemistry》1999,38(20):6668-6677
A comprehensive kinetic study of sulfite oxidase has been undertaken over the pH range 6.0-10.0, including conventional steady-state work as well as rapid kinetic studies of both the reaction of oxidized enzyme with sulfite and reduced enzyme with cytochrome c (III). A comparison of the pH dependence of kcat, kred, and kox indicates that kred is principally rate limiting above pH 7, but that below this pH the pH dependence of kcat is influenced by that of kox. The pH independence of kred is consistent with our previous proposal concerning the reaction mechanism, in which attack of the substrate lone pair of electrons on a Mo(VI)O2 unit initiates the catalytic sequence. The pH dependence of kred/Kdsulfite indicates that a group on the enzyme having a pKa of approximately 9.3 must be deprotonated for effective reaction of oxidized enzyme with sulfite, possibly Tyr 322, which from the crystal structure of the enzyme constitutes part of the substrate binding site. There is no evidence for the HSO3-/SO32- pKa of approximately 7 in the pH profile for kred/Kdsulfite, suggesting that enzyme is able to oxidize the two equally well. By contrast, kcat/Kmsulfite and kred/Kdsulfite exhibit distinct pH dependence (the former is bell-shaped, the latter sigmoidal), again consistent with the oxidative half-reaction contributing to the kinetic barrier to catalysis at low pH. The pH dependence of kcat/Km(cyt c) (reflecting the second-order rate of reaction of free enzyme with free cytochrome) is bell-shaped and closely resembles that of kox/Kd(cyt c), reflecting the importance of the oxidative half-reaction in the low substrate concentration regime. The pH profile for kox/Kd(cyt c) indicates that two groups with a pKa of approximately 8 are involved in the reaction of free reduced enzyme with cytochrome c, one of which must be deprotonated and the other protonated. These results are consistent with the known electrostatic nature of the interaction of cytochrome c with its physiological partners.  相似文献   

15.
Phenylacetone monooxygenase (PAMO) from Thermobifida fusca is a FAD-containing Baeyer-Villiger monooxygenase (BVMO). To elucidate the mechanism of conversion of phenylacetone by PAMO, we have performed a detailed steady-state and pre-steady-state kinetic analysis. In the catalytic cycle ( k cat = 3.1 s (-1)), rapid binding of NADPH ( K d = 0.7 microM) is followed by a transfer of the 4( R)-hydride from NADPH to the FAD cofactor ( k red = 12 s (-1)). The reduced PAMO is rapidly oxygenated by molecular oxygen ( k ox = 870 mM (-1) s (-1)), yielding a C4a-peroxyflavin. The peroxyflavin enzyme intermediate reacts with phenylacetone to form benzylacetate ( k 1 = 73 s (-1)). This latter kinetic event leads to an enzyme intermediate which we could not unequivocally assign and may represent a Criegee intermediate or a C4a-hydroxyflavin form. The relatively slow decay (4.1 s (-1)) of this intermediate yields fully reoxidized PAMO and limits the turnover rate. NADP (+) release is relatively fast and represents the final step of the catalytic cycle. This study shows that kinetic behavior of PAMO is significantly different when compared with that of sequence-related monooxygenases, e.g., cyclohexanone monooxygenase and liver microsomal flavin-containing monooxygenase. Inspection of the crystal structure of PAMO has revealed that residue R337, which is conserved in other BVMOs, is positioned close to the flavin cofactor. The analyzed R337A and R337K mutant enzymes were still able to form and stabilize the C4a-peroxyflavin intermediate. The mutants were unable to convert either phenylacetone or benzyl methyl sulfide. This demonstrates that R337 is crucially involved in assisting PAMO-mediated Baeyer-Villiger and sulfoxidation reactions.  相似文献   

16.
The kinetic mechanism of hog kidney D-amino acid oxidase with D-alpha-aminobutyrate as substrate has been examined in detail using a combination of steady state and rapid reaction methods. At concentrations of D-alpha-aminobutyrate below 0.5 mM, the rapid reaction and steady state results are consistent with the mechanism previously proposed for D-alanine (Massey, V., and Gibson, Q. H. (1964) Fed. Proc. 23, 18-29; Porter, D. J. T., Voet, J. G., and Bright, H. J. (1977) J. Biol. Chem. 252, 4464-4473). Both flavin reduction by D-alpha-aminobutyrate and reoxidation are quite rapid. Release of product from the oxidized enzyme has been measured directly and matches the turnover number at infinite concentrations of both substrates. Substitution of deuterium for the alpha-hydrogen decreases the rate of reduction 1.4-fold, without any effect on the apparent Kd. Computer simulations show that the kinetic isotope effects on the reductive half-reaction with D-alanine reported by Porter et al. (see above reference) can be explained using a two-step model with a kinetic isotope effect of 1.75 on the limiting rate of reduction. The effect of enzyme concentration on the kinetics has been examined in some detail. With D-alanine as substrate, increasing the enzyme concentration over the range 29 nM to 17 microM resulted in less than a 2-fold decrease in the turnover number. The Kd for benzoate binding also decreased marginally with increasing enzyme concentration. The effect of enzyme concentration is consistent with a decrease in the rate of release of ligands from the oxidized enzyme as the enzyme concentration is increased.  相似文献   

17.
V L Davidson  L H Jones  M A Kumar 《Biochemistry》1990,29(48):10786-10791
The quinonoid confactors of Paracoccus denitrificans methylamine dehydrogenase exhibited a pH-dependent redistribution of electrons from the 50% reduced plus 50% oxidized to the 100% semiquinone redox form. This phenomenon was only observed at pH values greater than 7.5. The semiquinone was not readily reduced by addition of methylamine, consistent with the view that this substrate donates two electrons at a time to each cofactor during catalysis. Once formed at pH 9.0, no change in redox state from 100% semiquinone was observed when the pH was shifted to 7.5, suggesting that the requirement of high pH was for formation and not stability of the semiquinone. The rate of semiquinone formation exhibited a first-order dependence on the concentration of methylamine dehydrogenase, indicating that this phenomenon was a bimolecular process involving intermolecular electron transfer between reduced and oxidized cofactors. The rate of semiquinone formation decreased with decreasing ionic strength, suggesting a role for hydrophobic interactions in facilitating electron transfer between methylamine dehydrogenase molecules. Methylamine dehydrogenase was covalently modified with norleucine methyl ester in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). This modification did not affect the catalytic activity of the enzyme but greatly inhibited the intermolecular redistribution of electrons at high pH. This modification also prevented subsequent cross-linking by EDC of the large subunit of methylamine dehydrogenase to amicyanin, the natural electron acceptor for this enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Zhao G  Jorns MS 《Biochemistry》2002,41(31):9747-9750
Monomeric sarcosine oxidase (MSOX) contains covalently bound FAD and catalyzes the oxidation of sarcosine (N-methylglycine) and other secondary amino acids, including L-proline. The reductive half-reaction with L-proline proceeds via a rapidly attained equilibrium (K(d)) between free E(ox) and the E(ox).S complex, followed by a practically irreversible reduction step (E(ox).S --> E(red).P) associated with a rate constant, k(lim). The effect of pH on the reductive half-reaction shows that the K(d) for L-proline binding is pH-independent (pH 6.46-9.0). This indicates that MSOX binds the zwitterionic form of L-proline, the predominant species in solution at neutral pH (pK(a) = 10.6). Values for the limiting rate of reduction (k(lim)) are, however, strongly pH-dependent and indicate that an ionizable group in the E(ox).L-proline complex (pK(a) = 8.02) must be unprotonated for conversion to E(red).P. Charge-transfer interaction with L-proline as the donor and FAD as acceptor is possible only with the anionic form of L-proline. The ionizable group in the E(ox).L-proline complex is required for conversion of enzyme-bound L-proline from the zwitterionic to the reactive anionic form, as judged by the independently determined pK(a) for charge-transfer complex formation with the MSOX flavin (pK(a) = 7.94). The observation that the anionic form of L-proline with a neutral amino group is the reactive species in the reduction of MSOX is similar to that observed for other flavoenzymes that oxidize amines, including monoamine oxidase and trimethylamine dehydrogenase.  相似文献   

19.
Blazyk JL  Lippard SJ 《Biochemistry》2002,41(52):15780-15794
Soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) catalyzes the selective oxidation of methane to methanol, the first step in the primary catabolic pathway of methanotrophic bacteria. A reductase (MMOR) mediates electron transfer from NADH through its FAD and [2Fe-2S] cofactors to the dinuclear non-heme iron sites housed in a hydroxylase (MMOH). The structurally distinct [2Fe-2S], FAD, and NADH binding domains of MMOR facilitated division of the protein into its functional ferredoxin (MMOR-Fd) and FAD/NADH (MMOR-FAD) component domains. The 10.9 kDa MMOR-Fd (MMOR residues 1-98) and 27.6 kDa MMOR-FAD (MMOR residues 99-348) were expressed and purified from recombinant Escherichia coli systems. The Fd and FAD domains have absorbance spectral features identical to those of the [2Fe-2S] and flavin components, respectively, of MMOR. Redox potentials, determined by reductive titrations that included indicator dyes, for the [2Fe-2S] and FAD cofactors in the domains are as follows: -205.2 +/- 1.3 mV for [2Fe-2S](ox/red), -172.4 +/- 2.0 mV for FAD(ox/sq), and -266.4 +/- 3.5 mV for FAD(sq/hq). Kinetic and spectral properties of intermediates observed in the reaction of oxidized MMOR-FAD (FAD(ox)) with NADH at 4 degrees C were established with stopped-flow UV-visible spectroscopy. Analysis of the influence of pH on MMOR-FAD optical spectra, redox potentials, and NADH reaction kinetics afforded pK(a) values for the semiquinone (FAD(sq)) and hydroquinone (FAD(hq)) MMOR-FAD species and two protonatable groups near the flavin cofactor. Electron transfer from MMOR-FAD(hq) to oxidized MMOR-Fd is extremely slow (k = 1500 M(-1) s(-1) at 25 degrees C, compared to 90 s(-1) at 4 degrees C for internal electron transfer between cofactors in MMOR), indicating that cofactor proximity is essential for efficient interdomain electron transfer.  相似文献   

20.
The reduction of the melilotate hydroxylase . 2-OH-phenyl propionate complex by NADH and reduced 3-acetyl pyridine adenine dinucleotide (AcPyNADH) has been investigated using steady state kinetic and rapid reaction techniques. Reduction by NADH appeared to involve only one charge-transfer-type intermediate (between reduced enzyme and NAD) as previously described (Strickland, S., and Massey, V. (1973) J. Biol. Chem. 248, 2953-2962). Reduction by AcPyNADH was shown to involve two charge-transfer-type intermediates. The first was between oxidized enzyme and AcPyNADH and the second was between reduced enzyme and AcPyNAD. Reaction of AcPyNADH with oxidized enzyme . 2-OH-phenyl propionate complex to form the first charge-transfer complex reached equilibrium within the mixing time of the stopped flow apparatus (5 ms). Subsequent steps in the reaction appeared to be first order and were independent of the AcPyNADH concentration. An 8-fold deuterium isotope effect on the step involving flavin reduction was found when reduced 3-acetyl[4A-2H]pyridine adenine dinucleotide (AcPyNADD) was used as the reductant. Analysis of the rapid reaction results for the reaction of oxidized pyridine nucleotide with reduced enzyme . 2-OH-phenyl propionate complex indicated the presence of two forms of reduced enzyme (in equilibrium) of which only one form was capable of reacting with the oxidized pyridine nucleotide. Based on the rapid reaction data, a mechanism for the reduction half-reaction is proposed. The turnover number calculated from this mechanism is in good agreement with that determined from the steady state data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号